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On the Behavior of Folded
Tape-Springs
Tape-springs are thin-walled beams with a curved cross section that can be elast
deformed to yield a flexible region of high curvature known as a fold. This featur
exploited in the folding and self-deployment of a number of recently proposed deplo
structures. This study characterizes the quasi-static response of a folded tape-s
under a prescribed rotation and separation between its support points. It is shown tha
corresponding end loads and fold shape are accurately predicted by a variational
nique, and are confirmed by a finite element analysis. This information may then be
in further design of tape-spring hinge systems.@DOI: 10.1115/1.1365153#
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1 Introduction and Background
This study deals with a specialized structural form of the

eryday carpenter’s tape known as a ‘‘tape-spring.’’ A tape-spr
is a thin-walled, open cylindrical structure with a natural tran
verse curvature. It can be elastically deformed within its longi
dinal plane to yield a well-defined elastic crease orfold. In order
to properly characterize such behavior, moment-rotation relat
ships for symmetric bending are usually performed and are hig
nonlinear and direction dependent~@1#!. For example, if the direc-
tion of bending is in theopposite senseto the original transverse
curvature, the spring exhibits a snap-through buckling to sudde
form a fold. Duringequal-sensebending—in the same directio
as the transverse curvature—formation of a fold is more grad
In both cases, the fold is connected on either side to relativ
undeformed straight parts and resembles a continuous hinge

When released, a folded tape-spring quickly returns to
straight configuration. This ability to self-actuate and the simp
ity of form are exploited in the folding and self-deployment
several structures recently proposed for spacecraft applicat
see Seffen@2# for an extensive review. Two examples are a rig
panel connected at its base to a spacecraft through rows of s
parallel tape-springs~@3,4#! and a membrane antenna with radia
mounted tape-springs that are either discretely folded or wrap
around a central hub~@5–7#!. At the end of deployment, the tape
springs ‘‘lock’’ into their undeformed shape to impart some sti
ness to the foldable structure.

In dynamic laboratory tests, a folded tape-spring structure
restrained by a minimum of forces and simple release mechan
ensure that the deployment is free from interference of the hold
parts. In practice, extra loads may be applied to the structurebe-
fore deployment, as given by the large inertia forces during lau
or by over-constraining the packaged state. If measures are
taken to prevent transmission of these loads through the t
spring ends to the more flexible fold regions, the application m
prematurely unfold or some tape-springs may become damag

It would be difficult to ascertain the degree of distortion
damage without doing a detailed study of the overall structure
appropriate starting point is to consider a single tape-spr
Moreover, the post-buckled response under symmetric
couples is well understood~@1,2,7#!. Therefore, it is natural to
extend study to a folded tape-spring also subject to end forces
further simplify matters, only deformations within the longitudin

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, O
18, 2000; final revision, Dec. 6, 2000. Associate Editor: R. C. Benson. Discussio
the paper should be addressed to the Editor, Professor Lewis T. Wheeler, Depa
of Mechanical Engineering, University of Houston, Houston, TX 77204-4792,
will be accepted until four months after final publication of the paper itself in
ASME JOURNAL OF APPLIED MECHANICS.
Copyright © 2Journal of Applied Mechanics
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plane of symmetry are to be considered; the effect of lateral lo
is not pursued. Thus, the aim of this paper is to formulate comp
models of behavior, which may be used in subsequent design
stowed tape-spring structures, and the layout is as follows.

Section 2 describes some intuitive observations associated
end-loaded tape-springs and reviews previous work. In Sectio
a finite element analysis provides more accurate insight, and
plifying assumptions on the behavior are stated. An expression
the radius of curvature of fold in a tape-spring under end for
and end couples is derived by a variational method in Sectio
The performance is then compared to simulations from finite e
ment analysis in Section 5. The study concludes in Section 6

2 Fold Behavior
The geometry of an undeformed tape-spring is shown in F

1~a!. The transverse radius of curvature isR, the overall length is
L, and the cross section has uniform thicknesst and subtends
anglea.

Under increasing equal and opposite end couples, a narrow
gion of the tape deforms into a fold connected on either side
transition orploy regionsto straight parts, and is shown schema
cally in Fig. 1~b!. The formation process is analogous to the b
havior in systems withpropagating instabilities~@8#! and is dis-
cussed at length by Seffen@2# with reference to tape-springs.

Upon formation, the fold has a constant longitudinal radius
curvature,R* , and zero transverse curvature irrespective of
relative rotation,u, between the ends. A number of approxima
yet insightful studies~@9–11#! have suggested thatR* is equal to
R. However, extensive finite element simulations for a range
tape-spring geometries~@2#! have shown that there is a margin
difference between these values and is assumed to be the
here. Note thatu is approximately the fold angle of embrace if th
ploy regions are assumed to have negligibly small longitudi
curvature, Fig. 1~b!.

The change in longitudinal curvature is denoted ask l51/R*
and the transverse curvature change isk t equal to 02(21/R)
511/R for opposite-sense bending and to21/R for equal-sense
bending. Following Calladine@12#, multiplying the flexural rigid-
ity D by k l1nk t and by the transverse arc-lengthRa provides
an estimate of the bending moment,M5M* , at any point in the
fold as

M5DRa@k l1nk t#, (1a)

⇒M* 5DRaF 1

R*
6

n

RG , (1b)

whereD5Et3/12(12n2), E is Young’s modulus andn is Pois-
son’s ratio. Note that Eq. 1~b! is independent of the arc-length o
fold, Ru. Thus, asu is increased or decreased under end coup
C5M* , Fig. 1~b!, the fold grows or shrinks in arc-length. Mor
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generally, the position of the fold along the tape andu are not
uniquely determined, providedu is not so small that the tape snap
back to the straight configuration.

A relatively simple experiment that illustrates this indeterm
nacy has one end of a folded tape-spring clamped and a forP
applied parallel to the other end, see Fig. 2~a!. When u is held
fixed, the fold is observed to move towards the base as the
translates under virtually zero force. Near to the support, the r
base shape interacts with and arrests the motion of the fold. S
sequently, points within the fold are constrained to unnatura
deform with highest curvature on the base side, andP is no longer
small.

A detailed study and confirmation of the above behavior
provided in Seffen and Pellegrino@1#. Importantly, if like loads
persist at tape-spring ends in a more complex tape-spring s
ture, then it cannot be guaranteed that the packaged state rem
intact.

When the fold is not near to a support, only loads that attem
to induce symmetric deformation about the fold midpoint may

Fig. 1 Tape spring definitions: „a… undeformed geometry; „b…
deformation with a single fold under end-wise couples C. The
section view is end-on and the direction of bending is in the
opposite sense to the transverse curvature.

Fig. 2 Performance of fold under end loads: „a… end force ap-
plied to built-in tape-spring and the fold freely moves; „b… sym-
metric end loading and a folded tape-spring and the fold does
not move
370 Õ Vol. 68, MAY 2001
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carried in equilibrium. For an initially symmetric layout, the en
forces are therefore co-linear, as shown in Fig. 2~b!. In this case,
the end couples are not necessarily equal toM* nor is P small.
This may not be entirely obvious, but is easily demonstrated ag
with a bent length of carpenter’s tape. If the distance between
tape-spring ends is decreased by application of inwardly poin
forces, the relative rotation between the ends also increases i
end couple is held atM* . However, if the end couple in the
direction of rotation is reduced, so does the rotation. In eit
case, the bending moment at the fold center is greater thanM* ,
leading to an increased apex curvature above 1/R* . Conversely, if
u is fixed and the end forces repel one another, i.e., point a
from each other, the midpoint bending moment is a minimum a
may be less thanM* , causing the fold curvature to decreas
Under large forces, the fold can cleave apart into two sepa
folds, which then freely run along the tape in opposite directio
to either end, and can be readily demonstrated.

In a folded tape-spring application, end loads that compress
folds in tapes may give rise to large changes of curvature a
possibly, plastic deformation; if the ends are being pulled apar
fold may separate, thereby upsetting the packaged configura
Therefore, it is imperative to quantify such behavior, in order
ensure safe stowage of the application during transportation
well as preservation of the proper shape required for accu
deployment. However, the problem is uniquely complicated
the interdependency of the large displacement deformation
the stress-resultants at any section within the tape-spring,
needs to be included in any analytical procedure. Previous stu
on tape-springs referenced to thus far point to the success of fi
element analyses in reproducing experimental behavior and is
route chosen here to provide, first, more detailed insight into
end-loaded behavior. This will permit simplifying assumptions
be made for a subsequent theoretical study.

3 Finite Element Analysis
The commercially available software package ABAQUS~@13#!

is used to model the tape-spring as a mesh of S4R5 shell elem
Each element is quadrilateral with four corner nodes, has
degrees-of-freedom, and the displacement field within the elem
is bi-linear. Due to symmetry, only half the mesh in the transve
direction needs to be modeled. Typically, the total number
elements is 240, with 48 along the length of the tape, and
straight mesh is shown in Fig. 3~a!. In addition, two reference
nodes are defined at the centroid of cross section at each end
are connected to nodes in the same end of tape-spring by mea
rigid, massless bars. The corresponding force and kinematic q
tities at the reference nodes define the overall equilibrium
sponse of the tape-spring. The material properties are line
elastic and a small-strain, large-displacement behavior is assu

The tape-spring is deformed in two stages. First, a fold
formed under equal and opposite end couples. One of the re
ence nodes is fixed in position, but is permitted rotation about
axis of bending while the other node is free to translate and
Fig. 3 Finite element model and deformation response: „a… original mesh and initial bending to form an opposite-sense fold; „b…
tape-spring before and after compression by end forces with fixed end rotation
Transactions of the ASME
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rotate. To capture the nonlinear snap-through phase, the sol
procedure empowers an arc-length method to extract the equ
rium path from a generalized load-displacement space of the
discussed by Seffen and Pellegrino@1#. The final relative rotation
between the ends is arbitrarily specified, and in Fig. 3~a! it is p
radians.

At the start of the second stage, both reference nodes are
tionally constrained. A concentrated load is specified on the tra
lating reference node in a direction towards or away from
opposite node, and is incrementally increased from zero usin
standard static solution procedure from the ABAQUS library. F
ure 3~b! indicates the deformation due to end forces that comp
the fold with d as the relative displacement between ends. T
longitudinal radius of curvature has clearly decreased through
the fold and, even ford of the order ofR* , the straight parts are
undeformed but increase in length and the fold region subte
the same angle.

The tape-spring geometry and material properties are liste
Table 1 and are typical of an everyday mild-steel carpenter ta
except forE, the Young’s modulus, which is three times larg
than normal. Asd increases, the end couples reverse direct
leading to compression in the free edges of tape near to the e
For values ofd greater than those reported here, local buckl
took place at the ends for a lower value ofE; by artificially in-
creasingE, this is avoided and the deformation is confined to t
folded region.

Also tabulated areu andR* , the latter value being computed a
the end of the first deformation stage. Note thatR* differs fromR
by approximately 15 percent, thereby confirming thatR* ÞR with
this more accurate approach.

More insight is provided in Fig. 4~a!, which indicates the varia-
tion in the ratio of total bending strain energy,UB , to total
stretching strain energy,US , with d. The ratio is large suggestin
that stretching effects are small in comparison to bending effe
The former can be attributed to the ploy regions where there
small Gaussian curvature~@11#!; asd increases, the ploy region
move further away from the ends and their deformation rema
unchanged but, overall, bending effects increase, as doesUB .

This is readily seen in Fig. 4~b!, which plots the longitudinal
curvature change along the tape whenC is equal toM* and at
some stage during compression; a dimensionless intrinsic le
parameter isj measured from the fixed end, see Fig. 3~b!. The

Table 1 Geometry and material properties of tape-spring, and
initially folded geometry

R
@mm#

a
@rad#

t
@mm#

L
@3Ra#

E
@GPa#

n
@-#

R*
@mm#

u
@rad#

20.3 0.94 0.16 8 630 0.3 23.6 p
Journal of Applied Mechanics
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fold radius is everywhere constant underM* but the change in
curvature increases towards the midpoint during compress
This also confirms that, except for small changes in the ploy
gions, the parts on either side of the fold have negligible cur
ture.

It is possible to report in detail on many other aspects of de
mation but, for the sake of brevity, the assumptions they lead
are now summarized. Presuming to characterize behavior u
fixed u due to, first,M* and to, second,P andC whend is varied,
then: the fold undergoes additional bending, symmetric abou
midpoint and the transverse curvature is zero throughout the f
the original straight parts remain straight, the fold angle of e
brace and the relative end rotation are the same, and stretc
effects can be neglected along with twist. Although these assu
tions have been extracted from the behavior under end-wise c
pression, it can be expected that they also apply for the cas
repelling end forces.

4 Theoretical Analysis
A theoretical model for the quasi-static response of a ta

spring to symmetric end-wise loading is now proposed. This
formulated in terms of potential energy expressions for the w
done by the end loads and the strain energy stored in the fo
region according to thecurrent geometry of deformation; a
simple, but effective variational approach is used to admi
closed-form expression for the longitudinal radius of curvature

Consider Fig. 5. Initially,P andd are equal to zero,M* is the
couple at both ends, and the fold has radiusR* . In the deformed
configuration,P and d are nonzero and the corresponding e
couple for fixedu is C. PointA is the midpoint of fold. The angle
subtended by a general point,S, in the fold from the line of sym-
metry throughA is b and r 5r (b) is its unknown longitudinal
radius of curvature;b extends to values ofu/2 on either side.

In the directions shown,P andC are defined as positive. Thei
current potential energy is simply2Pd, sinceC does no work if
the end rotation does not change. An expression ford is now
determined. Observe first that the original separation between
ends isX defined by the relationship

X5@L2R* u#cos
u

2
12R* sin

u

2
. (2)

The current separation is the distancex equal to

2lL cos
u

2
1E

2u/2

u/2

r cosbdb, (3)

where a dimensionless length for the straight parts including
ploy regions,l, is calculated by subtracting the current arc-leng
of fold from the overall length, that is
Fig. 4 Comparison of behavior for end-wise compression: „a… ratio of the bending strain energy to stretching strain energy in
tape-spring during end-wise compression; „b… variation in longitudinal curvature along a compressed tape-spring: solid, constant
bending moment M* ; dashed, compression under P
MAY 2001, Vol. 68 Õ 371
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b52u/2

b5u/2

rdbG . (4)

Substituting Eq.~4! into Eq. ~3! noting thatd5X2x, subtracting
the resulting expression from Eq.~2! and tidying up yields

d5R* F2 sin
u

2
2u cos

u

2G1E
2u/2

u/2

r Fcos
u

2
2cosbGdb. (5)

For the fold, an expression for its potential strain energy
bending per unit surface area without twist is~@12#!

D

2
@k l

21k t
212nk lk t#, (6)

where the longitudinal curvature change is now equal to 1/r ; re-
call k t561/R for opposite and equal-sense bending, respectiv
Integrating Eq. ~6! over the surface area of fold yields fo
opposite-sense bending

D

2 E
2u/2

u/2 F 1

r 2 1
1

R2 1
2n

rRGRardb. (7)

Multiplying 2P by Eq. ~5! and adding to Eq.~7! results in the
total potential energy expression for the deformed tape-spring

E
2u/2

u/2 FDRa

2 S 1

r
1

r

R2 1
2n

R D2PrS cos
u

2
2cosb D Gdb

1PR* F2 sin
u

2
2u cos

u

2G . (8)

In order to admit a solution forr (b), Eq. ~8! needs to be mini-
mized subject to the initial conditionsP50 when d50 and r
5R* . Since d is also a function ofr in Eq. ~5!, the required
approach follows a procedure found in Hestenes@14# for minimiz-
ing simple integrals withintegral side conditions. Note that al-
thoughC does not appear explicitly in Eq.~8! it reenters implicitly
by fixing u; an expression forC is derived later.

The total potential energy is, first, re-expressed as a functioJ0
of r in terms of the constant and integrand expressions as follo

J0~r !5c01E
2u/2

u/2

V0~r ~b!!db. (9)

Comparing to Eq.~8! then

c05PR* F2 sin
u

2
2u cos

u

2G , (10a)

V05
DRa

2 F1

r
1

r

R2 1
2n

R G2PrFcos
u

2
2cosbG . (10b)

Note thatV0 must be a continuous function and obviates the n
for r (b) to be smooth, as would be expected for a fold with
sharp changes in geometry.

Fig. 5 Definition of parameters associated with deformation of
a tape-spring
372 Õ Vol. 68, MAY 2001
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Similarly, to account for the initial conditions, it is necessary
define another functionJ1 of r using Eq.~5!, that is

J1~r !5c11E
2u/2

u/2

V1~r ~b!!db50, (11)

with

c15R* F2 sin
u

2
2u cos

u

2G , (12a)

V15r Fcos
u

2
2cosbG . (12b)

SinceJ0 andJ1 are both functions ofr (b), their integrand parts
can be combined into a single composite function,F(r ): the con-
stantsc0 andc1 do not have any bearing on the variational pr
cedure which follows.

This composite function needs to be strictly defined by

F5g0V01g1V1 , (13)

and the variation withr is implied. g0 andg1 are nonzero, posi-
tive multipliers that are either constants or functions determin
from minimizing F on the initial conditions and on nonzeroP.
Using Eqs. 10~b! and 12~b!, Eq. ~13! is fully written as

F5g0FDRa

2 S 1

r
1

r

R2 1
2n

R D2PrS cos
u

2
2cosb D G

1g1r Fcos
u

2
2cosbG . (14)

Before either multiplier can be determined, some sanity che
are essential. Ifg0 is equal to zero, then

]F

]r
5g1Fcos

u

2
2cosbG50 (15)

can never have a minimum forg1.0. Likewise, if g150 then

]F

]r
5g0FDRa

2 S 2
1

r 2 1
1

R2D2PS cos
u

2
2cosb D G50 (16)

admits for zero end forcer 5R and is invalid, andg1 cannot be
zero.

The simplest function for either multiplier is a nonzero co
stant. Choosing a value ofg0 equal to 1, substituting into Eq.~14!,
differentiating the resulting expression with respect tor, and set-
ting equal to zero leads to

]F

]r
5

DRa

2 F2
1

r 2 1
1

R2G2PFcos
u

2
2cosbG1g1Fcos

u

2
2cosbG

50. (17)

Substituting for the initial conditions,P50 andr 5R* , and solv-
ing for g1 explicitly gives

g15FDRa

2 S 2
1

R2 1
1

R* 2D G•Fcos
u

2
2cosbG21

. (18)

An expression forr is obtained by replacingg1 in Eq. ~17! with
Eq. ~18! and rearranging to give

r ~b!5R* •F11
2PR* 2

DRa S cosb2cos
u

2D G21/2

. (19)

The above expression can be shown to be the same for eq
sense bending andr 5R* whenP is equal to zero.

Finally, satisfaction of moment equilibrium about pointA in
Fig. 5 yields for the end couple
Transactions of the ASME
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C5MA2PS lL cos
u

2
1E

0

u/2

r sinbdb D . (20)

The bending momentMA at A is derived from Eq. 1~a! with k l
51/r for b50 andl is determined from Eq.~4!. Note that Eq.
~20!, upon substitution ofr with Eq. ~19!, cannot be integrated to
yield a closed-form expression forC; the process needs to b
tackled by numerical means, as is now performed in compar
to finite element results.

5 Results and Discussion
The initial geometry and material properties are the same a

Table 1, and the tape has been folded with opposite-sense c
tures. The results from two tests are now presented for, firsP
increasingly positive and, second,P decreasingly negative. In s
doing, note that the quotient term inside parentheses in Eq.~19! is
dimensionless and it is convenient to normalize force~and mo-
ment! in a similar way. However, sinceR* depends on finite
element analysis, it is replaced with the natural parameterR, lead-
ing to the following ‘‘barred’’ dimensionless groups:

P̄5
PR

Da
, C̄5

C

Da
. (21)

Likewise, d is normalized by dividing byR, i.e., d̄5d/R and a
measure of dimensionless longitudinal curvature compares
current value to the initial fold curvature by definingk̄ l5R* /r .

„a… End-Wise Compression. Figure 6~a! indicates the~P,d!
behavior. The theoretical curve was computed by, first, specify
a piece-wise variation inP up to the maximum value from finite
element analysis. For each value ofP, the constant terms inr, Eq.
~19!, are known and the resulting expression is substituted
Journal of Applied Mechanics
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Eq. ~5!, which is numerically integrated over the range~2p,p!
via the software package MATLAB@15# to yield the correspond-
ing value ofd.

The correlation between theory and the exact solution is
tially close but diverges asd increases. The performance is non
theless encouraging, even at large end displacements, given
assumptions of the theoretical model.

A number of snap-shots of the change in longitudinal cur
ture are presented in Fig. 6~b! according to the indicated value
of P. The lengths of the straight parts, as given by Eq.~4!, were
first calculated to define the regions either side of the f
with assumed zero curvature change; the end points of th
lines then discontinuously connect to the variation due to 1/r from
Eq. ~19!. As can be clearly seen, the difference between the
and finite element results is virtually negligible in most of th
fold.

The variation ofP with end-coupleC is plotted in Fig. 7~a!.
The numerical procedure for calculatingC in Eq. ~20! was similar
to that employed ford. This figure shows that asP increases, in
order to maintain a fixed relative rotation between the endsC
decreases and atP̄50.487 the end couple is zero. The correspon
ing end displacement from Fig. 6~a! is approximatelyd50.36R.
Since the angle of fold arc-length isp, an ‘‘average’’ radius of
fold is (2R* 20.36R)/2, which is less thenR* . Thus, it is incor-
rect to presume thatR* can be simply found in this way, for
example, when holding the ends of tape between the tips of
gers and measuring the separation distance. The subsequent
of M* , Eq. 1~b!, may also be inaccurate. This may seem trivial
highlight, however, dynamic models of the deployment of tap
spring systems~@1#! equateM* to the torque applied by the tape
spring fold to the rest of the structure and, therefore, needs to
accurately measured. At larger values ofP, the end couple acts in
the opposite direction, as discussed in Section 3.
Fig. 6 Comparison of behavior for end-wise compression: „a… force-displacement response of a bent tape-spring with geometry
in Table 1. The continuous line is the finite element analysis result and the squares denote the theoretical prediction. „b… Variation
in longitudinal curvature change, k lÄ1Õr , within the fold for PÄ0N „solid …, PÄ1.266N „dashed …, and PÄ7.020N „dashed-dot ….
FEA given by thick lines, theory as symbols and thin lines.

Fig. 7 Comparison of behavior between end loads and maximum longitudinal radius curvature: „a… Variation in end couple with
applied force: FEA „solid …; theory „squares …. Geometry as in Table 1. „b… Variation in longitudinal curvature at the fold mid-point,
k l ,A with end force P. Line-style as in part „a….
MAY 2001, Vol. 68 Õ 373



Fig. 8 Comparison of behavior of repelling end-wise forces: „a… Variation in force P with end displacement d: FEA given by
continuous line; theoretical prediction is squares. Geometry as in Table 1. „b… Behavior of longitudinal radius of curvature for
PÄ0N „solid …, PÄÀ1.318N „dashed …, and PÄÀ2.644N „dashed-dot …. FEA is thick lines, theory is thin lines and symbols.
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In addition, Fig. 7~b! indicates that the maximum longitudina
curvature~at the fold midpoint! for zero end couple is some 5
percent greater than 1/R* for the tape-spring of this study. Henc
the maximum strain in a fold supported by end forces alone
much greater than in the case of end couplesM* , and may lead to
unforeseen and permanent deformation in the material. Again
discrepancies between theory and computation in both plot
Fig. 7 are very small.

„b… End-Wise Tension. The force-displacement plot i
shown in Fig. 8~a!. The procedure for obtaining the theoretic
curve is exactly the same as in Fig. 6~a!, but with negative values
for P. The correlation between results is, again, very good at
values ofd, and marginally diverges at higher values. Figure 8~b!
indicates that the fold curvature rapidly decreases towards
midpoint: as the magnitude ofP increases, the distance betwe
points in the fold and the tape-spring end decreases, and
moment-carrying capabilities are reduced. This manifests a
steadily reducing gradient in the~P, d! response in the previou
figure.

Finally, the maximum magnitude forP is given by noting that
the curvature at the midpoint cannot be less than zero. Inver
Eq. ~19! and setting equal to zero withb50 defines the inequality
constraint

2PR* 2

DRa F12cos
u

2G.21, ⇒ P̄.2
1

2 S R

R* D 2 1

12cos@u/2#
,

(22)

making use of Eq.~21!. For u5p, Eq. ~22! yields P̄.20.370,
but there is no guarantee that the largest value can be carrie
practice without the singly folded tape-spring now forming tw
distinct folds. The finite element procedure was unable to cap
this separation so that the results of Eq.~22! could be verified;
nonetheless, the above calculation provides a simple upper-b
estimate on the maximum load.

6 Summary
If unsymmetric loads are applied to a folded tape-spring,

fold may freely roll along the tape; if the tape-spring forms part
an application, then the unbalanced loads may alter the pack
arrangement. The only combination of end loads that may be
ried without movement of a fold far away from any constraint h
co-linear end forces in the simplest case of a symmetric layou
theoretical model for the symmetric deformation of a fold und
tape-spring end forces and end couples has been derived us
simple, but expeditious variational technique. This points to
closed-form solution for the variation in longitudinal radius
curvature in the fold as a function of the prescribed end for
material properties, and geometry of the folded tape-spring.
large-displacement response has been shown to be accuratel
related by a finite element analysis. Thus, for folded tape-sp
structures, if tape-spring end conditions are known in advanc
374 Õ Vol. 68, MAY 2001
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launch, the foregoing analysis may be used to predict the de
of distortion in the softer folds and, hence, the implications
safe stowage and correct deployment.

Nomenclature

c0 , c1 5 constant potential energy terms
C 5 tape-spring end couple
D 5 flexural rigidity5Et3/12(12n2)
E 5 Young’s modulus
F 5 composite function

J0 , J1 5 variational functions
L 5 tape-spring length
M 5 bending moment

M* 5 fold moment under end couples
P 5 tape-spring end force
r 5 longitudinal radius of curvature
R 5 transverse radius of curvature

R* 5 fold radius under end couples
t 5 tape-spring thickness

x, X 5 tape-spring end separation

Symbols

a 5 subtended angle of cross section
b 5 fold angular coordinate

g0 , g1 5 variational multipliers
d 5 linear displacement between ends
j 5 intrinsic tape coordinate

k l , k t 5 longitudinal and transverse curvature changes
l 5 dimensionless length of straight parts
u 5 fold angle of embrace; relative end rotation
n 5 Poisson’s ratio

V0 , V1 5 potential energy integrands
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On Saint-Venant’s Problem for
an Inhomogeneous, Anisotropic
Cylinder—Part I: Methodology
for Saint-Venant Solutions
In this paper, the first in a series of three, a procedure based on semi-analytical
elements is presented for constructing Saint-Venant solutions for extension, bendin
sion, and flexure of a prismatic cylinder with inhomogeneous, anisotropic cross-sect
properties. Extension-bending-torsion involve stress fields independent of the axial
dinate and their displacements may be decomposed into two distinct parts whic
called the primal field and the cross-sectional warpages herein. The primal field emb
the essence of the kinematic hypotheses of elementary bar and beam theories and
unrestrained torsion. The cross-sectional warpages are independent of the axial co
nate and they are determined by testing the variationally derived finite element disp
ment equations of equilibrium with the primal field. For flexure, a restricted thr
dimensional stress field is in effect where the stress can vary at most linearly alon
axis. Integrating the displacement field based for extension-bending-torsion gives th
the flexure problem. The cross-sectional warpages for flexure are determined by t
the displacement equations of equilibrium with this displacement field. In the next p
the cross-sectional properties such as the weighted-average centroid, center of twi
shear center are defined based on the Saint-Venant solutions established in the p
paper and numerical examples are given. In the third paper, end effects or the qu
fication of Saint-Venant’s principle for the inhomogeneous, anisotropic cylinde
considered. @DOI: 10.1115/1.1363598#
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Introduction
This paper is the first of three devoted to the equilibrium ana

sis of a finite length prismatic elastic cylinder whose cross sec
may be arbitrary in its geometry and may be composed of
number of distinct materials. Each constituent material may h
linear elastic mechanical properties exhibiting the most gen
form of rectilinear anisotropy. The materials are perfectly bond
so that full intersurface kinematic and traction continuity is a
sured. The cylinder’s lateral surface is traction-free. The two e
of the cylinder are acted upon by tractions which are presume
be prescribed on a pointwise basis. These traction states lead
axial force, bending moment, torque, and flexure~transverse
shear! force, and they must occurred in such a way that ove
equilibrium of the cylinder is maintained.

Specializing the above problem description to a homogene
isotropic cylinder gives the celebrated Saint-Venant’s proble
The Saint-Venant’s solutions or that to the relaxed formulation
Saint-Venant’s problem~@1,2#! are solutions in which the point
wise specification of tractions on the ends was replaced by i
grals representing the axial force, bending moment, torque,
flexure force. Saint-Venant asserted that differences between
tion states according to his solutions and any other equipol
traction state were confined to regions at the ends of the cylin
i.e., Saint-Venant’s principle. The Saint-Venant solutions for h
mogeneous, isotropic cylinders occupy a very important plac
structural engineering. They validate the kinematic hypothese

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, O
7, 1999; final revision, July 21, 2000. Associate Editor: J. W. Ju. Discussion on
paper should be addressed to the Editor, Professor Lewis T. Wheeler, Departm
Mechanical Engineering, University of Houston, Houston, TX 77204-4792, and
be accepted until four months after final publication of the paper itself in the AS
JOURNAL OF APPLIED MECHANICS.
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elementary mechanics of material theories for the extens
bending, torsion, and flexure of slender members as well as d
eate their ranges of validity.

With integral end conditions in the relaxed formulation, ma
competing solutions are possible as there are limitless end trac
states capable of producing identical force and moment resulta
But the Saint-Venant solutions are distinguished by certain ch
acteristics. Clebsch@3# indicated that the resultant traction vect
on any material plane normal to the cross section of the cylinde
parallel to its generator. For extension, bending, and tors
Voigt @4# indicated that the stress and strain fields are indepen
of the axial coordinate, and for flexure, these states can var
most linearly along the cylinder’s axis. Sternberg and Knowles@5#
showed that the Saint-Venant extension-bending-torsion solut
for a homogeneous, isotropic cylinder produce absolute minim
strain energy states. For the flexure problem, Sternberg
Knowles provided a proof of a minimum strain energy state
the special case of Poisson’s ratio equal to zero.

Herein, Saint-Venant solutions, i.e., solutions to the relaxed
mulation of the Saint-Venant problem, for an inhomogeneous,
isotropic cylinder are constructed. For this task, two sequen
problems are addressed according to the decomposition of t
end cross section force and moment resultants into the follow
two sets,~1! extension-bending-torsion and~2! flexure. Variation-
ally derived semi-analytical finite element displacement equati
of equilibrium are used in the analysis. The solution methodolo
calls for the displacement fields to be set forth at the outset. E
of the fields for the two sequential problems can be put into t
essential parts,~1! a primal field and~2! cross-sectional warpages
Ieşan’s rational scheme~@6#! is used to generate these fields, b
cause it is systematic and does not require any other a p
assumptions, such as those used in the semi-inverse method
his scheme, the primal field for extension-bending-torsion is
tained by integrating the most general form of rigid-body d

t.
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placement with respect to the axial coordinate. That for flexur
obtained by integrating that for extension-bending-torsion. Th
displacement fields are expressed in terms of unknown ampli
coefficients. It is mentioned that these fields may also be der
from Voigt’s characterization of the Saint-Venant problem, i.
that for extension-bending-torsion is obtained by integrating
strain-displacement relations for a strain state that is indepen
of the axial coordinate and that for flexure is obtained by integ
ing the extension, bending, torsion field once with respect to
axial coordinate. Testing the governing equilibrium equatio
with the extension-bending-torsion and flexure displacement fi
results in systems of equations for the cross-sectional warp
that may be seen to be driven by the primal field. Once
warpages are found, the stress components can be determin
terms of the displacement amplitude coefficients. By integrat
the appropriate stress components over the cross section, c
sectional stiffness relations are formed that enable the resu
forces and moments to be related to the unknown displacem
coefficients.

From the Saint-Venant solutions, cross-sectional proper
such as the centroid~or stiffness weighted centroid!, the principal
bending axes, the center of twist and the shear center ca
determined. These issues are addressed in Kosmatka, Lin,
Dong @7#, the second paper in this three-part series. End eff
are considered in Lin, Dong, and Kosmatka@8#, the third of the
three-part series, where a method for the quantitative analys
Saint-Venant’s principle is given. Any pointwise specification
end tractions can be taken as the sum a Saint-Venant field a
self-equilibrated stress state. This self-equilibrated stress state
be represented by the eigendata of the spectral representati
the matrix operator in the governing equilibrium equation. T
specific case of end effects in restrained torsion was given
Kazic and Dong@9#.

The present procedure for Saint-Venant solutions differs
nificantly from that used by Kosmatka and Dong@10# for a ho-
Journal of Applied Mechanics
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mogeneous, anisotropic cylinder even though all theoretical c
siderations are the same. Comments on the differences are g
in the Concluding Remarks section.

Semi-Analytical Finite Element Equations
Consider a prismatic cantilevered cylinder of lengthL with an

arbitrarily shaped cross section of perfectly bonded linearly ela
anisotropic materials as shown in Fig. 1. LetR denote the open
region occupied by the cylinder withB as its lateral surface. LetP
denote a generic cross section of the cylinder whose lateral bo
ary curve is Sp . The surfaces at the tip and root ends a
identified as P1 and P2 , respectively. Establish right-han
Cartesian coordinates~x, y, z! and take the origin at some poin
at the tip endP1 . The mechanical variables of the proble
are stress, strain, and displacement,s(x,y,z),e(x,y,z),u(x,y,z),
with components s5@sxx ,syy ,szz,syz ,sxz ,sxy#

T, e
5@exx ,eyy ,ezz,gyz ,gxz ,gxy#

T, u5@u,v,w#T. The constitutive
equation for a given anisotropic material in the cross section
the forms5Ce, where the symmetric (636) matrix C contains
the 21 independent elastic moduli.

In the present version of the semi-analytical finite elem
method, the cross section of the cylinder undergoes discretiza
In each element, the displacement fieldu is taken in product form
of interpolation functionsn(x,y) over the cross section and nod
variables (uu ,uv ,uw) of unspecified functions of the axial coor
dinatez. In the computer code for the examples in the two sub
quent papers, both six-node triangular and eight-node quadr
eral elements are used, so that the cross-sectional interpola
are complete second-order polynomials. The displacement
u(x,y,z) has the form

u~x,y,z!5ne~x,y!ue~z! (1a)

or
Fig. 1 Coordinate system for anisotropic cylinder
MAY 2001, Vol. 68 Õ 377
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H u~x,y,z!

v~x,y,z!

w~x,y,z!
J 5F n~x,y! • •

• n~x,y! •

• • n~x,y!
G H uu~z!

uv~z!

uw~z!
J .

(1b)

The separation of the dependent variables with one part state
terms of an assumed field occupies in an intermediate pos
between an exact solution and a Ritz/Galerkin technique, a pr
dure due to Kantorovich and Krylov@11#.

With this partitioned dependence of displacement field~1!, the
differential strain-displacement operators can be separated
two parts.

e5L xyu1L zu (2)

where L xy and L z are matrices of linear differential operato
given by

L xy53
]

]x
• •

•

]

]y
•

• • •

• •

]

]y

• •

]

]x

]

]y

]

]x
•

4 ; L z53
• • •

• • •

• •

]

]z

•

]

]z
•

]

]z
• •

• • •

4 . (3)

Substitution of Eq.~1! into Eq.~2! gives the strain-transformatio
equations as

e5b1ue1b2ue,z (4)

where

b153
n,x • •

• n,y •

• • •

• • n,y

• • n,x

ne,y n,x •

4 ; b253
• • •

• • •

• • n

• n •

n • •

• • •

4 . (5)

The governing equilibrium equations are variationally deriv
from the theorem of minimum potential energy in the form of

dS 1

2 E0

LH E E
P

eTCedx dyJ dz1VED 50 (6)

whereVE represents potential energy of end tractions onP1 . As
the variational process onVE gives boundary data only, its appro
priate form for Saint-Venant solutions is deferred until the disc
sion of boundary conditions. Inserting strainse for all elements
into Eq. ~6! and carrying out the variation leads to the followin
governing equilibrium equations for the anisotropic cylinder:

K1U,zz1K2U,z2K3U50 (7)

where U5@Uu ,Uv ,Uw#T denotes the assembled ordered no
displacement components and system stiffness matr
K1 ,K2 ,K3 are given by

@K1 ,K2 ,K3#5(
n51

N E E @~b2
TCb2!,

~b2
TCb12b1

TCb2!, ~b1
TCb1!]dxdy. (8)
378 Õ Vol. 68, MAY 2001
d in
tion
ce-

into

s

ed

-
s-

g

al
ices

Note thatK1 and K3 are symmetric, whileK2 is antisymmetric.
The specific roles of these stiffness matrices can be inferred f
their dependence onb1 andb2 . As K3 is constituted fromb1 , it
governs generalized plane strain, whileK1 formed fromb2 relates
to behavior complement to generalized plane strain. Stiffness
trix K2 is the agent that couples these two behaviors. These
erators are the same as those in the governing equations of K
and Dong@9# for the analysis of restrained torsion and Tawe
Dong, and Kazic@12# for reflection of monochromatic waves a
the free end of a cylinder. The derivation follows standard is
parametric finite element methodology, and further details may
found in the aforementioned papers.

In the relaxed formulation, force and moment resultants
employed rather than the tractions on a cross section. On a ge
cross sectionP at some arbitrary axial coordinatez, these force
and moment resultants are given by

E E
P

szxdx dy5Px~z! E E
P

szzydx dy5Mx~z!

E E
P

szydx dy5Py~z!; E E
P

szzxdx dy52M y~z! (9)

E E
P

szzdx dy5Pz~z! E E
P

~szyx2szxy!dx dy5Mz~z!

This equation can be recast in compact form as

E E
P

hTsdx dy5F~z! (10)

whereF(z) andh(x,y) are given by

FT~z!5@Px ,Py ,Pz ,Mx ,2M y ,Mz# (11)

h~x,y!53
• • • • • •

• • • • • •

• • 1 y x •

• 1 • • • x

1 • • • • 2y

• • • • • •

4 . (12)

In replacing the pointwise specification of the end tractions
their force and moment resultants, the form ofVE in Eq. ~6! is
written as

VE52F̄I
T~0!a52$P̄1a11 P̄2a21 P̄3a31M̄1a4

2M̄2a51M̄3a6%P1
(13)

whereai are displacement amplitudes of the Saint-Venant so
tions to be presented. They are associated with the cross-sect
deformational measures corresponding to these force and mo
resultants. At the root endP2 , a fully restrained condition is
assumed so that kinematic boundary conditions are met in
variational process.

Rigid-Body Displacements
There are six distinct rigid-body displacement modes for

cylinder, which satisfy governing Eq.~7! identically. Furthermore,
they lead to zero strains when substituted into stra
transformation Eq.~4!. These two sets of relations are useful ide
tities in the solution procedure.

Let M be the total number of nodes in a given finite eleme
model. The matrix form of the rigid-body displacements can
set forth with the help of the following six 3M column vectors
Ri .
Transactions of the ASME
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R15H I1

0
0
J ; R25H 0

I1

0
J ; R35H 0

0
I1

J
(14)

R45H 0
0
y
J ; R55H 0

0
x
J ; R65H 2y

x
0
J

where (I1 ,x,y) are column vectors of lengthM with unit entries,
the x and they-coordinates of theM nodes, respectively. Then
rigid-body displacement vectorURB(z) has the form

URB~z!5FRBaRB5@2zN11N2#aRB (15)

where

N15@0,0,0,R2 ,R1 ,0#T; N25@R1 ,R2 ,R3 ,R4 ,R5 ,R6#T

(16)

and aRB5@uo ,vo ,wo ,v1 ,v2 ,v3#T contains the six translationa
and rotational amplitudes. Substituting Eq.~15! into governing
Eq. ~7! and strain-transformation Eq.~4! gives

K3Ri50 ~ i 51,2,3,6!; b1r i50 ~ i 51,2,3,6! (17a)

K3R452K2R2 ; b1r45b2r2 (17b)
K3R552K2R1 ; b1r55b2r1

wherer is are the counterparts ofRis on the element level.

Problem I—Extension-Bending-Torsion
Problem I refers to extension-bending-torsion by applied tr

tions on the end cross sectionP I . The displacement field for
Saint-Venant’s solutions can be written as

u~x,y,z!5aI1z2aI5

z2

2
2aI6yz

1(
i 51

6

aIi c I iu~x,y!2v3y2v2z1uo

v~x,y,z!5aI2z2aI4

z2

2
1aI6xz

1(
i 51

6

aIi c I i v~x,y!1v3x2v1z1vo (18a)

w~x,y,z!5~aI31aI5x1aI4y!z

1(
i 51

6

aIi c I iw~x,y!1v1y1v2x1wo

where aIi ( i 51 to 6! are displacement amplitudes an
(c I iu ,c I i v ,c I iw) the components of the cross-sectional warpag
The coefficientsaI1 and aI2 are associated with longitudina
shear,aI3 with extension,aI4 andaI5 with bending, andaI6 with
torsion. That part of the field devoid of warpage functions a
rigid-body displacement is called theprimal field. The rigid-body
displacements (uo ,vo ,wo ,v1 ,v2 ,v3) were included for com-
pleteness sake.

Displacement field~18a! can be derived by integrating th
strain-displacement equations for a strain field independent ofz. It
can also be obtained by integrating the rigid-body displacem
with respect toz as shown by Ies¸an @6#.

The roles of the two longitudinal shears and their amplitu
coefficients aI1 and aI2 need clarification. These longitudina
shears appear in Eq.~18a! as a direct consequence of integrati
the most general form of the rigid-body displacement. They p
duce shear tractions on the lateral surfaceB, which violate the side
conditions of the Saint-Venant problem. In the present solut
procedure, carrying these two modes along produce null res
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They are completely uncoupled with the extension-bendi
torsion problem. It may be possible that these deformation mo
will participate in the solution of Almansi@13# and Michell @14#
problems where tractions occur on the lateral surface.

Recasting displacement field~18a! in matrix form gives

U~z!5@FI~z!1CI #aI1FRB~z!aRB (18b)

whereFI andCI are (3M36) matrices given by

FI~z!52
z2

2
N11zN2 (19)

and

CI5@c I1 ,c I2 ,c I3 ,c I4 ,c I5 ,c I6#T

(20)
aI5@aI1 ,aI2 ,aI3 ,aI4 ,aI5 ,aI6#T

Observe thatFI5*FRBdz, which is the essence of Ies¸an’s
scheme. An inspection of the primal field terms associated w
aI3 to aI6 in Eq. ~18a! or its matrix components in Eq.~19! shows
that they express the kinematic hypotheses of elementary s
tural theories of extension, pure bending, and unrestrained tors

The cross-sectional warpagesc I i s can be established by subs
tuting Eq.~18b! into Eq. ~7! and equating all terms multiplied by
deformation coefficientsaIi to zero.

K3c I i 5K2Ri ; ~ i 51,2,3,6!

K3c I45K2R42K1R2 (21)

K3c I55K2R52K1R1

Observe that the right-hand sides of Eq.~21! involve the primal
field FI , so that the cross-sectional warpages may be said to
driven by the displacement field embodying the kinematic hypo
eses of the elementary structural theories. The warpages are
tic responses due to cross-elasticity~Poisson ratio! effects and the
longitudinal shear warpages of free torsion. Note also thatc I1 and
c I2 in Eq. ~21! satisfy the rigid body identities~17a! so that

c I152R5 ; c I252R4 . (22)

This result shows that the two longitudinal shear fields,gxz and
gyz , which are associated withaI1 andaI2 , vanish identically and
are not involved in Problem I for extension-bending-torsion.

The solution to Eq.~21! requires the inverse ofK3 . BecauseK3
is singular due to the presence of rigid-body motion, it cannot
factorized without administering kinematic constraints. Fo
rigid-body modes, the three translations along the coordinate
rections and a rotation about thez-axis must be suppressed from
K3 prior to its inverse.

Once the nodal warpagesCI i s are found, the functional depen
dence of displacement field~18b! is completely defined. Using
strain-transformation Eq.~4!, identities~17b!, and the anisotropic
stress-strain relation, the strain and stress components in an
ment can be written as

e5@b2n21b1CIe#aI5@h1b1CIe#aI5e0aI (23a)

s5Ce0aI5s0aI (23b)

wheren2 andCIe are the counterparts ofN2 and nodal warpages
CI for the given element. In Eqs.~23a!, ~23b!, b2n2 was replaced
by h, which is possible by using identity~17b! and recalling the
criteria that preserve rigid-body displacements and constant s
modes in isoparametric finite element mappings, i.e.,

( ni51; ( nixi[nx5x; ( niyi[ny5y. (24)

The resultants on the end cross sectionP I for Problem I in
terms of the vectorF in Eq. ~13! takes the form

FI5@0,0,P3 ,M1 ,2M2 ,M3#T. (25)
MAY 2001, Vol. 68 Õ 379
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These resultants can be found by integrating the stress com
nents (szz,sxz ,syz) of Eq. ~23b! over each element’s cross
sectional area as indicated by Eq.~10! and summing the contribu
tions of theN elements of the total cross section.

(
i 51

N E E
P1

hTsdxdy5(
i 51

N F E E
P1

hTC@h1b1CIe#dxdyGaI

5FI (26)

or in the form of a cross-sectional stiffness relation

kI
~636!

aI
~631!

5 FI
~631!

→F 0
~232!

0
~234!

0
~432!

kIbb
~431!

G H aIa
~231!

aIb
~431!

J 5H 0
~231!

FIb
~431!

J
(27a)

where the expanded form of its nontrivial portionkIbb is

F k I33 k I34 k I35 k I36

k I34 k I44 k I45 k I46

k I35 k I45 k I55 k I56

k I36 k I46 k I56 k I66

G H aI3

aI4

aI5

aI6

J 5H P3

M1

2M2

M3

J . (27b)

Note thatkIbb is a symmetric matrix. The absence of terms in t
first two rows and columns of the (636)kI matrix further sub-
stantiates that the longitudinal shear components play no pa
extension-bending-torsion. Solution of Eq.~27b! gives

aIb5kIbb
21FIb . (28)

The coefficients ofkIbb and its inverse contain a number of pro
erties related to the cross section, such as the weighted-ave
centroid, principal bending axes, center of twist, etc., and th
properties will be considered in the next paper of this series
three papers.

Problem II—Flexure
Saint-Venant flexure involves a stress field that is at most lin

with z. The appropriate displacement field according to Ies¸an’s
scheme@6# is obtained by integrating the displacement field
Problem I once with respect toz to give

U~x,y,z!5@FII ~z!1zCI1CII #aII 1@FI~z!1CI~z!1CI #bII

1FRB~z!aRB (29)

whereFII 5*FIdz. There are six new warpage functions inCII
and two new sets of displacement coefficientaII andbII .

CII 5@c II 1 ,c II 2 , ¯ ,c II 6#T

aII 5@aII 1 ,aII 2 , ¯ ,aII 6# (30)

bII 5@bII 1 ,bII 2 , ¯ ,bII 6#

To determine the warpage functions, substitute Eq.~29! into
Eq. ~7! and set all terms multiplied by coefficientsaII andbII to
zero. Two sets of equations arise. One set is identical to Eq.~21!,
which verifies that the warpageCI is the same as that of Problem
I. The other setCII is found by solving the following equation:

K3c II i 5K1Ri1K2c I i ; ~ i 51 to 6!. (31)

This equation shows that the flexural warpages are driven by
primal field and the warpages of Problem I.

Substituting displacement field~29! into strain-transformation
Eq. ~3! and the anisotropic constitutive equations gives the
ement’s strain and stress fields as

e5@ze01e1#aII 1e0bII (32a)

s5@zs01s1#aII 1s0bII (32b)
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wheree0 and s0 were defined in Eqs.~23a! and ~23b!, respec-
tively, ande1 ands1 are given by

e15b2CIe1b1CIIe (33a)

s15Ce15Cb2CIe1Cb1CIIe . (33b)

Integrating the stresses over an element’s cross section acco
to Eq.~9! and summing the contributions ofN elements define the
array of resultant forces and moments on a generic cross secti
any locationz along the cylinder’s axis as

F~z!5F E E
P

hT@zs01s1#dx dyGaII 1F E E
P

hTs0dx dyGbII

5z~kIaII !1~kII aII 1kIbII ! (34)

wherekI was given by Eq.~27a! and the expanded form ofkII is
shown in Eq.~40a!.

The coefficients inaII are determined from global equilibrium
considerations. Differentiating Eq.~34! and noting that

]Mx

]z
5P2 ;

]M y

]z
52P1 (35)

shows that

]F~z!

]z
[FII8 5@0,0,0,P2 ,P1,0#T (36)

so that

kIaII 5FII8 ↔F 0
~232!

0
~234!

0
~432!

kIbb
~434!

G H aIIa
~231!

aIIb
~431!

J 5H 0
~231!

FIIb8
~431!

J . (37)

The solution for amplitudesaII 3 to aII 6 in aIIb is given by extract-
ing the second equation of the partitioned matrix in Eq.~37! and
solving it.

kIbbaIIb5FIIb8 (38)

The coefficientsaII 1 andaII 2 have no role in the flexure problem
With the coefficients inaII known, the coefficients inbII can be
determined from Eq.~34! by invoking the following conditions at
z50,

F~z!uz50[FII 5@P1 ,P2,0,0,0,P2ex1P1ey#
T, (39)

where the termP2ex1P1ey represents the torque ofP1 and P2
because they may be acting at distancesex andey off of the shear
center. Atz50, Eq. ~34! in expanded form appears as

F 0
~232!

0
~234!

0
~4x32!

kIbb
~4x34!

G H bIIa
~231!

bIIb
~431!

J 1F 0
~232!

kIIab
~234!

kIIba
~4x32!

kIIbb
~4x34!

G H 0
~231!

aIIb
~431!

J
5H FIIa

~231!

FIIb
~431!

J (40a)

or

kIIabaIIb5FIIa ; kIbbbIIb1k IIbbaIIb5FIIb . (40b)

Although it is not obvious in the form given, the first of Eq.~40b!
is identically satisfied. Upon its expansion, the results repeat
which are contained in Eq.~38!. The second of Eq.~40b! enables
the solution ofbIIb .

bIIb52kIbb
21kIIbbaIIb2kIbb

21FIIb (41)

The coefficientsbII 1 and bII 2 do not have a role in the flexure
problem.
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It should be emphasized that the form of Eq.~39! implies that
the flexure forces pass through the origin of coordinate system
the tip end, which may not coincide with the shear center.
flexure forces applied elsewhere, a torsional momentMz must be
included which is reflected in the sixth component in Eq.~39!. A
more general discussion of the shear center is given by the
paper.

Concluding Remarks
A procedure based on displacement equations of equilibr

and finite element modeling of the cross section has been
sented for solution of the relaxed Saint-Venant problems
extension-bending-torsion and flexure for a prismatic inhomo
neous, anisotropic cylinder. The displacement field for extens
bending-torsion is based on a strain field independent of the a
coordinate and that for flexure is obtained by one integration
the extension-bending-torsion field with respect toz. This system-
atic method of setting forth the Saint-Venant displacement fie
is due to Ies¸an @6#. Many characteristics in Saint-Venant’s sol
tions for homogeneous, isotropic cylinders were also apparen
the case of a cylinder with arbitrary cross-sectional propert
Axially independent stress field in extension-bending-torsion w
exhibited. By virtue of variationally derived equilibrium equation
and application of Saint-Venant kinematics, the Saint-Venant
lutions for an inhomogeneous, anisotropic cross section do in
manifest absolute minimum strain energy states among compe
solutions whose end tractions may lead to the same integral
conditions.

Kosmatka and Dong’s analysis~@10#! of a homogeneous, aniso
tropic cylinder differ from the present formulation, in that th
former sets forth the complete displacement field for all six e
resultants at the outset. Therefore, it was necessary to disting
the warpages due to torsion from that due to flexure, which w
possible through the use of an additional degree-of-freedom.
analysis enables all of the deformation coefficients to be identi
with their corresponding resultant forces and moments. T
present formulation, aside from its capability for treating inhom
geneous cross-sections, establishes the Saint-Venant solution
more systematic manner.
Journal of Applied Mechanics
at
or

ext

um
pre-
for
ge-
on-
xial
of

lds
-
t in
es.
as
s
so-
fact
ting
end

-
e
nd
uish
as

The
ed
he
o-
s in a

In the next paper, the cross-sectional properties of an inho
geneous, anisotropic properties are discussed. In the third c
panion paper, quantitative analysis of Saint-Venant’s principle
considered.

Acknowledgments
The authors thank Rokuro Muki for his critical reading of th

manuscript and his many helpful suggestions.

References
@1# de Saint-Venant, A. J. C. B., 1856, ‘‘Memoire sur la Torsion des Prisme

Mem. Savants Etrangers,14, pp. 233–560.
@2# de Saint-Venant, A. J. C. B., 1856, ‘‘Memoire sur la Flexion des Prismes,’

Math. de Liouville, Ser. II,1, pp. 89–189.
@3# Clebsch, 1862,
@4# Voigt, W., 1887, ‘‘Theoretische Studienu¨ber die Elasticita¨tsverhältnisse der
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On Saint-Venant’s Problem for
an Inhomogeneous, Anisotropic
Cylinder—Part II: Cross-Sectional
Properties
Cross-sectional properties of a prismatic inhomogeneous, anisotropic cylinder are d
mined from Saint-Venant solutions for extension-bending-torsion and flexure, w
method of construction was presented in a previous paper. The coupling of extens
bending, and twisting deformations due to anisotropy and inhomogeneity leads to
very interesting features. Herein, it is shown that for an inhomogeneous, anisot
cylinder whose cross-sectional plane is not a material symmetry plane, distinct mod
weighted and compliance-weighted centroids and distinct principal bending axes
possible. A line of extension-bending centers is given on which an axial force ca
extension and bending only but no twist. Two shear centers are given, one usin
Griffith-Taylor definition that ignores cross-sectional warpages and the other by stip
ing a zero mean rotation over the cross section. The center of twist is discussed, an
property depends on root end fixity conditions that are prescribed in terms of their m
values based on integrals over the cross section rather than by a pointwise specific
While these shear center and center of twist definitions have some rational bases
recognized that other definitions are possible, for example those based on modu
compliance-weighted integrals. Two examples, an angle and a channel, both compo
a two-layer630 deg angle-ply composite material, illustrate the procedures for de
mining these cross-sectional properties.@DOI: 10.1115/1.1365152#
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Introduction
Saint-Venant’s problem is concerned with equilibrium of

elastic cylinder subjected to traction on its cross sections at
two ends, and Saint-Venant’s solutions refer to those based
relaxed formulation where the pointwise traction specification
replaced by integrals representing the end forces and momen
method for constructing Saint-Venant’s solutions for a cylind
whose cross section may be composed of any number of perf
bonded anisotropic materials was presented by Dong, Kosma
and Lin @1#, hereinafter called DKL. Their method was based
semi-analytical finite elements with the displacement field
pressed in terms of nodal distributions and their correspond
amplitudes. These amplitudes are related to the force and mo
resultants in the form ofcross-sectional stiffness relations. In this
paper, attention is devoted to defining section properties, suc
centroids, principal bending axes, line of extension-bending c
ters, center of twist, and shear center. The Saint-Venant prob
in itself does not address these topics, but the Saint-Venant s
tions provide means for defining these cross-sectional proper

A body of literature on finite element analyses of Sai
Venant’s problem exists for homogeneous isotropic and an
tropic cylinders. Herrmann@2# and Mason and Herrmann@3# ana-
lyzed the torsion and flexure of homogeneous, isotropic beam
arbitrary cross-sectional shapes; Tolf@4# explored the bending o
a homogeneous, orthotropic beam; Wo¨rndle @5# considered a re-
stricted class of inhomogeneous, monotropic beams; and K
matka and Dong@6# considered the extension-bending-torsion a

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED
MECHANICS. Manuscript received by the ASME Applied Mechanics Divisio
Oct. 7, 1999; final revision, July 21, 2000. Associate Editor: J. W. Ju. Discussio
the paper should be addressed to the Editor, Professor Lewis T. Wheeler, Depa
of Mechanical Engineering, University of Houston, Houston, TX 77204-4792,
will be accepted until four months after final publication of the paper itself in
ASME JOURNAL OF APPLIED MECHANICS.
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flexure of a homogeneous, anisotropic beam. Many analytica
sues on the Saint-Venant problem for anisotropic cylinders w
discussed by Lekhnitskii@7#, but no solutions were given for a
completely anisotropic cylinder. Ies¸an @8–10# also studied this
problem and set forth a general procedure for generating
proper displacement fields for the extension-bending-torsion
flexure problems. His methodology was applied in DKL@1#.

To define the various cross-sectional properties, two gen
coordinate transformations are needed, a translation and a rot
about an axis normal to the cross-sectional plane. These tran
mations are used for locating the centroid and principal bend
axes. It will be seen that two distinct sets of these properties m
be possible that are based either on the cross-sectional stiffne
flexibility relation. From the flexibility relation, a line of
extension-bending centers can be defined. The location of
shear center is considered. The traditional definition by Griffi
Taylor @11# of this property does not take the warpage of the cr
section into account. Because the Saint-Venant solutions pro
warpages, other definitions of the shear center are possible. La
the center of twist is discussed. Examples are given to illust
these cross-sectional properties for two inhomogeneous, an
tropic cross sections.

Recapitulation of the Saint-Venant Solutions
For extension-bending-torsion of a uniform cantilevered cyl

der of lengthL with an arbitrary cross section of perfectly bonde
linearly elastic materials as shown in Fig. 1 of DKL@1#, the finite
element nodal displacement field has the form

U~z!5@FI~z!1CI #aI1FRB~z!aRB (1)

whereU(z) is an ordered 3m array of the nodal displacements o
the finite element model withN number of nodes;FI , CI and
FRB are 3N36 matrices representing the primal field, cros
sectional warpages and rigid-body displacements, respectiv
and aI and aRB are 631 arrays of amplitude coefficients. Th

,
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Fig. 1 „a… Coordinate transformation—translation; „b… coordinate transformation—rotation
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stresses of this displacement field enables the construction o
cross-sectional stiffness relationkIbbaIb5FIb relating the end
force and moments to their corresponding deformational coe
cients, that in expanded form is

F k I33 k I34 k I35 k I36

k I34 k I44 k I45 k I46

k I35 k I45 k I55 k I56

k I36 k I46 k I56 k I66

G H aI3

aI4

aI5

aI6

J 5H Pz

Mx

2M y

Mz

J . (2)

The diagonal coefficientsk I33, k I44, etc., ofkIbb are the exten-
sional, bending, and torsional rigidities;k l34,k l35 are extension-
bending coupling terms andk I45 express mutual bending couplin
about the~x,y!-axes;k I36 is the extension-torsional coupling; an
(k I46,k I56) are bending-torsional coupling terms. The inverse
Eq. ~2! gives the cross-sectionalcomplianceor flexibility relation
sIbbFIb5aIb or in expanded form as

F sI33 sI34 sI35 sI36

sI34 sI44 sI45 sI46

sI35 sI45 sI55 sI56

sI36 sI46 sI56 sI66

G H Pz

Mx

2M y

Mz

J 5H aI3

aI4

aI5

aI6

J . (3)
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For flexure, two transverse forces,Px andPy , act on the tip end
cross section but not necessarily through the shear center.
flexural displacement field has the form

U~x,y,z!5@FII ~z!1zCI1CII #aII 1@FI~z!1CI #bII

1FRB~z!aRB (4)

where FI(z) and CI are the primal field and cross-section
warpages of extension-bending-torsion,FII (z) and CII with aII
and bII contain the additional sets of the primal field and cro
sectional warpages for flexure and their associated displacem
amplitudes. Global equilibrium and end conditions give two re
tions for relating the end forces and moments to the displacem
amplitudes, i.e., kIbbaIIb5FIIb8 and kIbbbIIb5FIIb2kIIbbaIIb
which, in expanded form, are

F k I33 k I34 k I35 k I36

k I34 k I44 k I45 k I46

k I35 k I45 k I55 k I56

k I36 k I46 k I56 k I66

G5H aII 3

aII 4

aII 5

aII 6

J 5H 0
Py

Px

0
J (5)
MAY 2001, Vol. 68 Õ 383
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F k I33 k I34 k I35 k I36

k I34 k I44 k I45 k I46

k I35 k I45 k I55 k I56

k I36 k I46 k I56 k I66

G H bII 3

bII 4

bII 5

bII 6

J 5H 0
0
0

Pyex1Pxey

J
2F 0 k II 34 k II 35 k II 36

2k II 34 0 k II 45 k II 46

2k II 35 2k II 45 0 k II 56

2k II 36 2k II 46 2k II 56 0

G H aII 3

aII 4

aII 5

aII 6

J (6)

where ex and ey are thex and y distances to the shear cente
Coefficients (aII 1 ,aII 2) and (bII 1 ,bII 2) in aII andbII have no role
in flexure and may be ignored.

Coordinate Transformations
To determine the various cross-sectional properties, two c

dinate transformations are needed, viz., a translation (xt ,yt)
within the x-y plane and a counterclockwise rotationa about an
axis normal to it as shown in Figs. 1~a! and 1~b!. These two
transformations will be taken in sequence, translation first
then rotation. The unprimed quantities are referenced to the o
nal coordinate system, those with one prime are for the transl
axes, and those with the double primes are for the rotated a
For translation, the relation between~x,y! and (x8,y8) of a generic
point in the old and new systems is given by the equations

x5x81xt ; y5y81yt . (7)

For a counterclockwise rotation of anglea, the transformation has
the form

x95x8 cosa1y8 sina; y952x8 sina1y8 cosa. (8)

Referring to Fig. 1~a!, the formulas for transformations of dis
placements and their corresponding force and moment resul
by translation between the two systems are

aIb8 5T1aIb ↔ aIb5T2aIb8 (9)

FIb8 5T2
TFIb ↔ FIb5T1

TFIb8 , (10)

where matricesT1 and T2 are given in the Appendix. Applying
translation to Eqs.~2! and ~3! gives the new cross-sectional stif
ness and compliance matrices in terms of those of the old sys
as

kIbb8 5T2
TkIbbT2 (11)

sIbb8 5T1sIbbT1
T (12)

where the components ofkIbb8 andsIbb8 are given in Table 1.
Referring to Fig. 1~b!, rotation of displacements and their co

responding forces and moments by a counterclockwise anga
about thez-axis takes the forms

aIb9 5T3aIb8 ↔ aIb8 5T4aIb9 (13)

FIb9 5T4
TFIb8 ↔ FIb8 5T3

TFIb9 (14)

whereT3 andT4 are given in the Appendix. Applying rotation t
Eqs.~11! and ~12! gives

kIbb9 5T4
TkIbb8 T4 (15)

sIbb9 5T3sIbb8 T3
T (16)

where the components ofkIbb9 andsIbb9 are given in Table 2.
Transformations~9! ~10! and ~13! ~14! form a contragradient

pair. Tables 1 and 2 show thatk I33,k I36,k I66 remain invariant in
both coordinate transformations, but onlysI66 is invariant in both
transformation.
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Modulus and Compliance-Weighted Centroids and
Principal Bending Axes

The stiffness and compliance relations~2! and~3! depend on a
coordinate system with origin located at some point on the tip
cross-sectional plane. There are noa priori provisions in the
Saint-Venant problem for choosing an origin. Therefore, the st
ness and compliance matrices in general will be densely popul
evincing full coupling of extensional, bending, and torsional b
haviors. Certain terms, nevertheless, can be annihilated by
able choices of the origin and orientation of the coordinate ax
Herein, transformations are presented to rid the stiffness and c
pliance relations of coupling between extension and bending
between the bending effects about the two orthogonal axes.
location and orientation express thecentroid and theprincipal
bendingaxes of the cross section. For a general anisotropic in
mogeneous cylinder, two distinct centroids,~1! a modulus-
weighted centroidand ~2! a compliance-weighted centroid, as
well as two sets of principal bending axes are possible.

Translation ofkIbb to the modulus-weighted centroidrequires
that k I348 5k I358 50. Setting these terms equal to zero from th
expressions in Table 1 gives

xt5
k I35

k I33
; yt5

k I34

k I33
(17)

so that

F k I33 k I34 k I35 k I36

k I44 k I45 k I46

k I55 k I56

sym. k I66

G→F k I33 0 0 k I36

k I448 k I458 k I468

k I558 k I568

sym. k I66

G
(18)

Table 1 Relations of k i j8 and Sij8 in terms of k i j and Sij for
translation

k I338 5k I33 sI338 5sI331sI44 yt
21sI55 xt

2

12(sI34 yt1sI35 xt1sI45 xtyt)
k I448 5k I441k I33 yt

222k I34 yt sI448 5sI44

k I558 5k I551k I33 xt
222k I35 xt sI558 5sI55

k I668 5k I66 sI668 5sI66

k I348 5k I342k I33 yt sI348 5sI341sI44 yt1sI45 xt

k I358 5k I352k I33 xt sI358 5sI351sI45 yt1sI55 xt

k I368 5k I36 sI368 5sI361sI46 yt1sI56 xt

k I458 5k I451k I33 xtyt
2k I34 xt2k I35 yt

sI458 5sI45

k I468 5k I462k I36 yt sI468 5sI46

k I568 5k I562k I36 xt sI568 5sI56

wherext andyt are the translation from the old to new axes.

Table 2 Relations of k i j9 and Sij9 in terms of k i j8 and Sij8 for
rotation

k I339 5k I33 sI339 5sI338
k I449 5k I448 c21k I558 s212k I458 sc sI449 5sI448 c21sI558 s222sI458 sc
k I559 5k I558 c21k I448 s212k I458 sc sI559 5sI558 c21sI448 s212sI458 sc
k I669 5k I66 sI669 5sI66

k I349 5k I348 c2k I358 s sI349 5sI348 c2sI358 s
k I359 5k I358 c1k I348 s sI359 5sI358 c1sI348 s
k I369 5k I36 sI369 5sI368
k I459 5k I458 (c22s2)1(k I448 2k I558 )sc sI459 5sI458 (c22s2)1(sI448 2sI558 )sc
k I469 5k I468 c2k I568 s sI469 5sI468 c2sI568 s
k I569 5k I568 c1k I468 s sI569 5sI568 c1sI468 s

wheres5sin a andc5cosa; a5angle measured counterclockwise from old to ne
axes. Unprimed quantities indicate invariance to both translation and rotation.
Transactions of the ASME
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where the otherk I i j8 coefficients are given in Table 1. Th
unprimed quantities on the right-hand side of Eq.~18! denote an
invariance with respect to translation, i.e., the termsk I33, k I36,
andk I66.

Rotation of the coordinate axes to the principal bending a
eliminates mutual coupling of bending effects about both ortho
nal axes, so thatk I459 must vanish. Settingk I459 50 from Table 2
gives

tan 2a5
2k I458

k I558 2k I448
(19)

so that

F k I33 0 0 k I36

k I448 k I458 k I468

k I558 k I568

sym. k I66

G→F k I33 0 0 k I36

k I449 0 k I469

k I559 k I569

sym. k I66

G
(20)

where thek I i j9 coefficients are given in Table 2. The unprime
quantities on the right-hand side of Eq.~20! indicates an invari-
ance with respect to both translation and rotation. Consider
form of the stiffness matrix given by the right-handed side of E
~20! as thecanonical form, where all extensional and flexura
coupling are absent.

Translation ofsIbb to thecompliance-weighted centroidyields
sI348 5sI358 50, which from Table 1 gives the following equation
and solution:

FsI44 sI45

sI45 sI55
G H yt

xt
J 5 H sI34

sI35
J

H xt

yt
J 5

1

sI44sI552sI45
2 H sI34sI452sI44sI35

sI35sI452sI55sI34
J (21)

so that

F sI33 sI34 sI35 sI36

sI44 sI45 sI46

sI55 sI56

sym. sI66

G→F sI338 0 0 sI368

sI44 sI45 sI46

sI55 sI56

sym. sI66

G
(22)

where the formulas forsI338 andsI368 are given in Table 1.
A counterclockwise a-rotation of the z8-axis through

compliance-weighted centroid to principal bending axes yie
sI459 50. By the formula forsI459 from Table 2,a is given by

tan 2a5
2sI45

sI552sI44
(23)

so that

F sI338 0 0 sI368

sI44 sI45 sI46

sI55 sI56

sym. sI66

G→F sI338 0 0 sI368

sI449 0 sI469

sI559 sI569

sym. sI66

G
(24)

wheresIi j9 ’s are given in Table 2. Analogous to the canonical fo
of the stiffness matrix, the right-hand side of Eq.~24! is the ca-
nonical form of the compliance matrix.

The coefficient enabling two distinct centroids is the term,k I36
or sI36. In canonical forms, the presence of either of these co
ficients is dependent upon the following characteristics of
cross section. For all homogeneous cross sections, regardle
the extent of the anisotropy in the material properties,k I36 or sI36
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will not occur, and there is no distinction between the two ce
troids. The extension-torsion coupling coefficient is present o
for an inhomogeneous cross sectionthat also lacksmaterial sym-
metrywith respect to a generic cross-sectional plane. For the m
general form of anisotropy possessing symmetry about a c
section plane, the elastic moduliC matrix contains the following
terms:

C53
C11 C12 C13 • • C16

• C22 C23 • • C26

• • C33 • • C36

• • • C44 C45 •

• • • • C55 •

sym. C66

4 (25)

which is that for a monotropic material. Thus, the appearance
any of the coefficients beyond those shown in Eq.~25! in one of
the materials in an inhomogeneous cross section precipitatesk I36,
i.e., the presence of any one of the coefficien
C14,C15,C24,C25,C34,C35,C46,C56. Note that for an inhomoge-
neous, anisotropic cross section withk I36 present, the inverse o
the canonical form of the stiffness matrix will result, in general,
a densely populated compliance matrix, i.e.,

F k I33 0 0 k I36

k I44 0 k I46

k I55 k I56

sym. k I66

G21

5F sI33 sI34 sI35 sI36

sI44 sI45 sI46

sI55 sI56

sym. sI66

G
(26)

so that the presence ofsI34 andsI35 enables the possibility of two
centroids.

The bending-torsion coupling coefficients,k I46 and k I56, can
occur in both homogeneous and inhomogeneous cross-sec
lacking material symmetrywith any cross-sectional plane, i.e
with the presence of any coefficient beyond those shown in
~25!.

Line of Extension-Bending Centers
Flexibility relation ~3! at the compliance-weighted centroid ha

the form

F sI338 0 0 sI368

sI44 sI45 sI46

sI55 sI56

sym. sI66

G H Pz

Mx

2M y

Mz

J 5H aI3

aI4

aI5

aI6

J . (27)

This relation shows that an axial forcePz by itself with resultant
passing through the compliance-weighted centroid causes ex
sional, bending, and twisting deformations. By shiftingPz to a
point with coordinates (xeb ,yeb), twisting can be suppressed lea
ing it to produce extensional and bending deformations on
There exist an infinity of such points, however, lying on a straig
line that can be called theline of extension-bending centers. This
line is defined by settingaI650 in the fourth line of Eq.~27! and
letting Pz51, so thatMx52yeb andM y52xeb , to give

yeb8 5
sI56

sI46
xeb8 1

sI368

sI46
. (28)

For a homogeneous cross section, the line of extension-ben
centers passes through the centroid assI3650, see Kosmatka and
Dong @6#. Otherwise, this line is offset from the complianc
weighted centroid whensI36 occurs.
MAY 2001, Vol. 68 Õ 385
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Shear Center
The shear center is that point in the cross-sectional pl

through which the application of a transverse force causes
twist. It is generally regarded as a property of the cross sec
and is independent of the fixity conditions at the end of the c
inder; see Timoshenko and Goodier@12# for a discussion of this
point.

For shear center calculations, use the modulus-weighted
troid in the tip cross-sectional plane as the origin. The shear ce
location requires definition of therotation rateor theunit angle of
twist u as

u~x,y![
def 1

2

]

]z F]v
]x

2
]u

]yG . (29)

Partial differentiations,]v/]x and]u/]y of Eq. ~18a! of DKL
@1# according to definition~29!, give the rotation rateu for torque
Mz as

u~x,y!5aI6 a constant. (30)

Under torqueMz by itself, the rotation rateu is constant, andaI3 ,
aI4 , andaI5 can be expressed directly in terms ofaI6 from stiff-
ness matrix~20!.

aI352
k36

k33
aI6; aI452

k46

k44
aI6; aI552

k56

k55
aI6 (31)

Then, by the fourth equation of stiffness relation~2!, the following
torque-twist relation is obtained:

Mz5GJu (32)

whereGJ is thecomposite torsional rigidity1 of the cross section
given by

GJ5k662
k36

2

k33
2

k46
2

k44
2

k56
2

k55
. (33)

The rotation rateu for flexure by applying Eq.~29! to Eq. ~29!
of DKL @1# has the form

u~x,y!5aII 6z1bII 61
1

2 (
i 53

6

aIIi ~c I i v,x~x,y!2c I iu ,y~x,y!!.

(34)

Here,u5u(x,y) due to cross-sectional warpage, in stark contr
to that of Mz . Note that even though a transverse shear forc
involved in the shear center, only the warpages of the extens
bending-torsion problem participate in Eq.~34! as none of the
warpagesc II i ’s from the flexure problem enter into the rotatio
rate.

After these explanatory comments, a general definition of
shear center can now be stated. It is that point in any cro
sectional plane through which the application of a transverse fo
produces nou. Consider a unit forcePx51 passing through the
shear center that is at a distanceey from the centroid. A transverse
forcePy at a distanceex from the centroid can be similarly treate
in a separate calculation. Translation of this unit force from
shear center to the centroid causes an accompanying tors
momentMz5ey . Superposition of rotation rates from pure to
sion with Mz5ey and flexure withPx51 passing through the
modulus-weighted centroid yields the following equation:

uu torsion1uuflexure50. (35)

Inserting Eqs.~32! and Eq.~34! into Eq. ~35! and solving forey
give

1Lekhnitskii @7#, ~p. 180! calls this quantity thegeneralized torsional rigidity. In
his case, the generalized torsional rigidity accounts for the torsion/bending cou
but not the torsion/axial force coupling inasmuch as he only considered a hom
neous anisotropic cylinder wherek3650.
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ey~x,y,z!52GJFaII 6z1bII 61
1

2 (
i 53

6

aIIi ~c I i v,x~x,y!

2c I iu ,y~x,y!!G . (36)

This equation showsey to the shear center as apointwisefunction
of all three coordinates~x,y,z!. One possible way to proceed is t
define azero-mean rotation shear center eyM

, obtained by aver-
agingey over the cross-section.2

eyM
[

1

A E E
A
ey~x,y,z!dxdy52GJFaII 6z1bII 61(

i 53

6

aIIi V i G
(37)

whereA is the cross-sectional area andV i is given by

V i5
1

2A E E
A
~c I i v,x~x,y!2c I iu ,y~x,y!!dxdy ~ i 53 to 6!.

(38)

The line of shear centers is parallel to thez-axis if aII 6 is absent
from Eq. ~37!, i.e., for a cross-sectional plane also as a mate
symmetry plane. For cylinders without such material symme
the line of shear centers varies linearly along thez-axis.3

The classical definition of the shear center due to Griffi
Taylor @11# does not consider warpage. Disregarding warpage
Eq. ~36! gives this shear center as

eyGT
52GJ@aII 6z1bII 6#. (39)

Reissner’s shear center definition@14,15# rests on the condition
that it coincides with the center of twist at the root end. But, t
center of twist ~discussed in the next section! depends upon
boundary conditions. Hence, Reissner’s definition would also
pend on boundary conditions, so that it will not be a prope
solely of the cross section. But the boundary conditions at the
end involves a particular value of the rigid-body displacem
only. Since any two Saint-Venant displacement fields can o
differ by a rigid-body displacement, Reissner’s line of shear c
ters will be shifted but remain parallel to that of Eq.~37!, a result
shown by Kosmatka@16,17#.

Since coefficientsbIIi ’s in Eq. ~6! depend on the choice of th
origin, a consistency check ofFII in Eq. ~39! of DKL @1# may be
carried out by taking

FII 5@P151, P250, 0, 0, 0, eyi
# (40)

whereeyi
is they-distance to the shear center by either one of

two definitions,eyi
5eyM

, or eyGT
, or eyR

. This calculation will
yield different values for coefficientsaII 3 to aII 6 andbII 6 , but it
should give the same physical location of the shear center.

Center of Twist
The center of twist is that point at rest in every cross section

the cylinder subjected to a torque at the tip end and restra
from translation and rotation at the root end. It is dependent u
the root end boundary conditions; see Timoshenko and Goo
@12# for a discussion of this point. Therefore, it is necessary
discuss these conditions first. For a cantilevered cylinder of len
L under a unit torque, the rotation rateu is constant over its entire

ling
oge-

2Novozhilov@13# employed the same averaging procedure in his discussion of
shear center of a homogeneous, isotropic cylinder. He further showed that the
tion of the shear center depended upon the torsion problem only, and that the fl
problem need not be involved.

3Libove @18#, in his investigation of twist rates in thin-walled members, offered
definition of a mean value shear center over the length of the beam by integratin
equation similar to Eq.~37! over the length, which essentially gives the shear cen
location at midlength,z5L/2. In his discussion of this point, he immediately que
tions the utility of such a definition.
Transactions of the ASME
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length and equal to 1/GJ. Displacement field~18a! of DKL @1#
with aIi ’s given by Eqs.~30! and ~31! takes the form

u~x,y,z!5
1

GJ
F2yz1

k I56

k I55

z2

2
2

k I36

k I33
c I3u~x,y!2

k I46

k I44
c I4u~x,y!

2
k I56

k I55
c I5u~x,y!1c I6u~x,y!G2v3y2v2z1uo

v~x,y,z!5
1

GJ
Fxz1

k I46

k I44

z2

2
2

k I36

k I33
c I3v~x,y!2

k I46

k I44
c I4v~x,y!

2
k I56

k I55
c I5v~x,y!1c I6v~x,y!G1v3x2v1z1vo

(41)

w~x,y,z!5
1

GJ
F2

k I36

k I33
z2

k I56

k I55
xz2

k I46

k I44
yz2

k I36

k I33
c I3w~x,y!

2
k I46

k I44
c I4w~x,y!2

k I56

k I55
c I5w~x,y!1c I6w~x,y!G

1v1y1v2x1wo

where constantsuo , vo , wo , v1 , v2 , and v3 are rigid-body
translations and rotations.

In principle, the six rigid-body displacement components all
sufficient mathematical freedom to satisfy any arbitrary condit
but at one point only for each of the translations and rotatio
Lekhnitskii @7# used the following conditions in his pure bendin
example, which at (xo ,yo ,L) of the root end, are

u~xo ,yo ,L !5v~xo ,yo ,L !5w~xo ,yo ,L !50

]u~xo ,yo ,L !

]z
5

]v~xo ,yo ,L !

]z
5

]v~xo ,yo ,L !

]x
2

]u~xo ,yo ,L !

]y

50. (42)

He has also used the conditionsv150 andv250 for other ex-
amples elsewhere in his text. Restraint conditions~42! will not be
used since~1! fixing a point from both translation and rotation
not physically realizable, and~2! conditions]u(xo ,yo ,L)/]z50
and]v(xo ,yo ,L)/]z50 do not strictly express full rotational re
straint. Note also that applying Eq.~42! to another point only
change the rigid-body components in Eq.~41!, with the net effect
being merely another rigid-body displacement. In a prototy
physical case, many points may be partially and/or comple
restrained. One way to rationally represent this condition is
insist on the vanishing of the mean cross-sectional translationū
andv̄, and rotation about the cylinder’s generator, (v̄ ,x2ū,y)/2 at
the root endz5L, where the mean values are defined as th
cross-sectional averages.
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ū~z![
1

A E E u~x,y,z!dxdy50;

v̄~z![
1

A E E v~x,y,z!dxdy50
(43)

1

2
~ v̄ ,x~z!2ū,y~z!![

1

2A E E $v ,x~x,y,z!2u,y~x,y,z!%dxdy50

Substituting displacement field~41! to Eq. ~43! gives the follow-
ing equations in terms of components (uo ,vo ,v1 ,v2 ,v3 ,)

uo2v2L2v3ȳ52
1

GJ
F2 ȳL1

k I56

k I55

L2

2
2

k I36

k I33
U32

k I46

k I44
U4

2
k I56

k I55
U51U6G (44)

vo2v1L1v3x̄52
1

GJ
F x̄L1

k I46

k I55

L2

2
2

k I36

k I33
V32

k I46

k I44
V4

2
k I56

k I55
V51V6G (45)

v352
L

GJ
F2

k I36

k I33
V32

k I46

k I44
V42

k I56

k I55
V51V6G (46)

wherex̄ and ȳ are the coordinates of the geometric centroid a

Ui5
1

A E E c I iu~x,y!dxdy

Vi5
1

A E E c I i v~x,y!dxdy
J ~ i 53 to 6! (47)

andV i ’s was given previously by Eq.~38!. Additional equations
come from minimizing the integralJ of square of the displace
mentw(x,y,L) at the root end where

J[E E w2~x,y,L !dxdy (48)

with respect tov1 , v2 , andwo , i.e.,]J/]wo50, ]J/]v250, and
]J/]v150,

E E w~x,y,L !dxdy50;

E E xw~x,y,L !dxdy50; E E yw~x,y,L !dxdy50.

(49)

These minimizations supplant the conditions of the vanishing
the axial displacementw and slopes,]w/]x and]w/]y, over the
root end cross section. Weinstein@19# used this procedure, and h
based it on an idea of Cicala@20# and Trefftz @21#. Substituting
the third equation of~41! into Eq. ~49! gives the following three
equations, which together with Eqs.~44!–~46! enable the solution
of the rigid-body displacement

wo1 ȳv11 x̄v252
1

GJ
F2

k I36

k I33
~L1W3!2

k I46

k I44
L~ ȳL1W4!

2
k I56

k I55
L~ x̄L1W5!1W6G (50)
MAY 2001, Vol. 68 Õ 387
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ȳwo1
I xx

A
v11

I xy

A
v252

1

GJ
F2

k I36

k I33
~ x̄L1W3x̄!

2
k I56

k I55
S I yy

A
L1W5x̄D

2
k I46

k I44
S I xy

A
L1W4x̄D 1W6x̄G (51)

x̄wo1
I xy

A
v11

I yy

A
v252

1

GJ
F2

k I36

k I33
~ ȳL1W3ȳ!

2
k I56

k I55
S I xy

A
L1W5ȳD

2
k I46

k I44
S I yy

A
L1W4ȳD 1W6ȳG (52)

whereI xx , I yy , andI xy are planar moments and product of iner
with respect to the modulus-weighted centroidal axes and

~Wi ,Wix̄ ,Wiȳ!

5
1

A E E ~c I iw~x,y!,xc I iw~x,y!,yc I iw~x,y!!dxdy

~ i 53 to 6!. (53)

Returning to the center of twist location, its definition should
based on torsional deformations only. Hence, the extensional
bending terms in Eq.~41! should be discarded.

u~x,y,z!5
1

GJ
@2yz1c I6u~x,y!#2v3y2v2z1uo

v~x,y,z!5
1

GJ
@xz1c I6v~x,y!#1v3x2v1z1vo (54)

w~x,y,z!5
1

GJ
c I6w~x,y!G1v1y1v2x1wo

or in terms of the nodal displacements of the finite element mo
as

U~z!5
1

GJ
@zf61c6#1FRB~z!aRB (55)

wheref6 , c6 andFRB(z) are given by Eq.~15! of DKL @1#.
Referring to Fig. 2 and according to Eq.~55!, the total displace-

mentD i of i th node in the finite element model and its orientati
angleh i with respect to thex-axis arc

D i~z!5Aui
2~z!1v i

2~z!; h i~z!5tan21@ui~z!/v i~z!#. (56)

Since u is the unit angle of twist, the total twist at stationz is
u(L2z), so that thei th node rotated about the center of twist b
the amount

Riu~L2z!5D i (57)

whereRi is the distance between point (xi ,yi) and the center of
twist of coordinates (xct ,yct).

Ri
25~xi2xct!

21~yi2yct!
2 (58)

Different nodes yield different values ofxct and yct . A least-
squares solution forxct andyct is possible. Define the errore i of
the i th node asRiu(L2z)2D i , whose sum of its squarese2 over
the N nodes of the finite element is
388 Õ Vol. 68, MAY 2001
ia

e
and

del

n

y

e25(
i 51

N

@Riu~L2z!2D i #
2. (59)

Minimizing e2 with respect toxct andyct gives the following two
nonlinear algebraic equations

xct5
GJ

N~L2z! (i 51

N
D ixi

Ri
; yct5

GJ

N~L2z! (i 51

N
D i yi

Ri
(60)

where the nonlinearity emanates fromxct andyct in Ri . An itera-
tive solution can be obtained byregula falsi, i.e., by assumingxct
and yct on the right-hand sides of Eq.~60! and checking their
values by performing the indicated summations.

The warpage is the source of difficulty in defining the center
twist in an inhomogeneous, anisotropic cross section. When
point is not within the cross section, one cannot setu andv equal
to zero and solve forxct and yct inasmuch asc I6u(xct ,yct) and
c I6v(xct ,yct) are not defined. One way to remove this~x,y! de-
pendency is to adopt some average values, for example, usU6
andV6 of Eq. ~47!.

u~x,y,z!5
1

GJ
@2yz1U6#2v3y2v2z1uo

(61)

v~x,y,z!5
1

GJ
@xz1V6#1v3x2v1z1vo

Settingu50 andv50 and solving forx andy give the following
center of twist coordinates which may also act as initial estima
in the iterative solution of Eq.~59!.

xct52
GJ~vo2v1z!1V6

z1GJv3

; yct5
GJ~uo2v1z!1U6

z1GJv3

(62)

Examples
Two laminated anisotropic cross sections are considered,

~1! an angle with legs of 1.0 and 1.5 units and~2! an uneven
channel with sides of 1.0, 1.5 and 0.75 units as shown in Fig
and 4, respectively. Both are fabricated from a two-ply shee

Fig. 2 Center of twist location
Transactions of the ASME



raphite-
630 deg angle-ply with 0.1 unit total thickness and 0.05-unit-ply sheet thickness. The material properties are typical of a g
epoxy composite, i.e.,

EL

ET
510;

GLT

ET
50.4;

GTT

ET
50.3; nLT50.3; nTT50.25 (63)

and theCi j properties, in the630 deg orientations with respect to the coordinate axes, have the values

C5ET3
1.7033 0.3148 2.0804 • 61.0194 •

0.3148 1.0831 0.3781 • 60.0549 •

2.0804 0.3781 6.2848 • 62.9483 •

• • • 0.3750 • 70.0433

61.0194 60.0549 62.9483 • 2.0705 •

• • • 70.0433 • 0.3250

4 . (64)
a

h

ing
These two cross sections are formed by folding two-layer630
deg composite sheets into angle and channel shapes as sho
Figs. 3 and 4. Therefore, the above properties must be tr
formed accordingly to accommodate the fixed Cartesian coo
nate system.

With the initial origin of the coordinate systems taken at t
lower left corner of the cross section in both cases, their cro
sectional stiffness matriceskIbb

kIbb5
ET

103 F 871.14 421.98 202.58 219.17

421.98 399.34 29.07 29.12

202.58 29.07 116.37 24.30

219.17 29.12 24.30 1.20

G
angle

(65)

Fig. 3 Two-layer Á30 deg angle-ply angle cross section
Journal of Applied Mechanics
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kIbb5
ET

103 F 1014.44 624.75 253.92228.25

624.75 686.17 101.33 222.41

253.92 103.33 137.55 27.75

228.25 222.41 27.75 1.52

G
channel

.

(66)

Translation to the centroids and rotations to principal bend
axes lead to the following stiffness and flexibility matrices:

kIbb9 5
ET

103 F 871.14 • • 219.17

• 225.47 • 0.08

• • 38.73 0.21

219.17 0.08 0.21 1.20

G
angle

(67)

Fig. 4 Two-layer Á30 deg angle-ply channel cross section
MAY 2001, Vol. 68 Õ 389
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Table 3 Summary of section properties

Cross Section→ Angle Channel

Centroids x̄t ỹt u t x̄t ȳt u t

Modulus-weighted 0.233 0.484 23.85 deg 0.250 0.616 12.92
Compliance-weighted 0.237 0.489 23.86 deg 0.224 0.425 15.83

Composite
Torsional

Rigidity GJ/ET

0.78131023 0.60731023

Line of
Extension-Bending

Centers

y851.906x828.657 y851.179x811.094

Shear Centers

Griffith-Taylor ex520.189110.0127z ex520.416920.00242z
ey520.406920.01059z ey520.274010.01248z

Mean-valued ex520.185510.00127z ex520.423220.00242z
ey520.406420.01059z ey520.277610.01248z
e
a

c

h
’
o

t

ion
ross
nal
the
ber

int-

ed,
rding

t’s
gy

J.
sIbb9 5
1

ET F 1.77 • • 28.13

• 4.44 • 20.47

• • 25.86 26.98

28.13 20.47 26.98 1280.75

G
angle

(68)

kIbb9 5
ET

103 F 1014.44 • • 228.25

• 314.03 • 24.73

• • 61.37 21.78

228.25 24.73 21.78 1.52

G
channel

(69)

sIbb9 5
1

ET F 2.05 • • 38.14

• 3.52 • 22.34

• • 17.72 49.07

38.14 22.34 49.07 1647.23

G
channel

. (70)

The modulus and compliance-weighted centroids, compo
torsional rigidity, lines of extension-bending centers, and sh
center locations according to Griffith-Taylor and mean-valu
definitions for both cross sections are tabulated in Table 3 an
number of these properties are shown in Figs. 3 and 4. The
centroidal values and principal bending axes for the angle ar
close proximity and orientation with each other, but there
significant differences in these quantitities for the channel as s
in Fig. 4. The composite torsional rigidityGJ is based on Eq.
~33!, and that for the angle is approximately 65 percent of itsk I66
value. However, for the channel, there is an even greater redu
to 40 percent of itsk I66 value. For both of these cross section
there is only a small difference in the shear center locations
tween the Griffith-Taylor and zero mean rotation values.

Concluding Remarks
Methods for determining cross-sectional properties for an in

mogeneous, anisotropic cross section based on Saint-Venant
lutions were presented. It was shown that for an inhomogene
anisotropic cylinder lacking a cross-sectional material symme
plane, there are distinctions between the modulus-weighted
compliance-weighted centroids and their principal bending ax
The line of extension-bending centers was defined, which is ba
on the flexibility relation. Both Griffith-Taylor and zero-mean ro
tation definitions of the shear center were given, with the Griffi
MAY 2001
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Taylor definition ignoring warpages, while the zero-mean rotat
shear center relied on integrals of the warpages over the c
section. Likewise, a center of twist was set forth, a cross-sectio
property that is dependent upon the boundary conditions on
root end. These conditions were enforced on the basis of a num
of mean-valued displacements found by integration of their po
wise values over the cross section, as seen in Eqs.~37!, ~43!, and
~49!, and in the formula forJ given by Eq.~48!. While the defi-
nitions herein for both of these properties were rationally justifi
other averaging procedures are possible so that issues rega
their best definitionsremain open.

Appendix
The transformation matricesT1 , T2 , T3 , andT4 for translation

and rotation of coordinate axes are listed here.

T15F 1 yt xt 0

0 1 0 0

0 0 1 0

0 0 0 1

G ; T25F 1 2yt 2xt 0

0 1 0 0

0 0 1 0

0 0 0 1

G (A1)

T35F 1 0 0 0

0 cosa 2sina 0

0 sina cosa 0

0 0 0 1

G ;

T45F 1 0 0 0

0 cosa sina 0

0 2sina cosa 0

0 0 0 1

G . (A2)

These transformation matrices satisfy the equations

T1T25T2T15T2
TT1

T5T1
TT2

T51 (A3)

T3T45T4T35T3
TT4

T5T4
TT3

T51. (A4)
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On Saint-Venant’s Problem for an
Inhomogeneous, Anisotropic
Cylinder—Part III: End Effects
End effects or displacements and stresses of a self-equilibrated state in an inho
neous, anisotropic cylinder are represented by eigendata extracted from an alge
eigensystem. Such states are typical of traction and/or displacement boundary cond
that do not abide by the distributions according to Saint-Venant’s solutions, whose
struction were discussed in the first paper of this series of three. This type of analy
end effects quantitifies Saint-Venant’s principle, and the algebraic eigensystem prov
the eigendata is based on homogeneous displacement equations of equilibrium w
exponential decaying displacement form. The real parts of the eigenvalues convey
mation on the inverse decay lengths and their corresponding eigenvectors are disp
ment distributions of self-equilibrated states. Stress eigenvetors can be formed by a
priate differentiation of the displacement eigenvectors. The eigensystem and its a
system provide complete sets of right and left-handed eigenvectors that are interrela
two bi-orthogonality relations. Displacement and stress end effects can be represen
means of an expansion theorem based on these bi-orthogonality relations or by a
squares solution. Two examples, a beam with a homogeneous, isotropic cross secti
the other of a two layer beam with a630 deg angle-ply composite cross section, a
given to illustrate the representation of various end effects.@DOI: 10.1115/1.1363597#
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Introduction
In Dong, Kosmatka, and Lin@1#, the first paper in this series o

three and hereinafter called DKL@1#, Saint-Venant solutions were
constructed for a prismatic cylinder with an inhomogeneous,
isotropic cross section. This construction was made on the bas
the relaxed formulation of Saint-Venant’s problem where the e
conditions are prescribed in terms of integral resultants of a
force, bending moments, torque, and flexure force.

Saint-Venant solutions are rigorously valid everywhere exc
in the neighborhoods of the two ends of a cylinder. Saint-Ven
@2,3# conjectured that his solutions differed with all other so
tions possessing equipollent forces and moments only in th
neighborhoods, i.e., in what has since been called Saint-Vena
Principle. For any solution with an end force or moment equa
that of a Saint-Venant solution, the difference between them
self-equilibrated state whose effects are confined to near the
of the cylinder, i.e., end effects. Our understanding of Sa
Venant’s celebrated principle has been predominantly on a qu
tative rather than a quantitative basis.

The first quantitative analyses of end effects were given
Johnson and Little@4# and Little and Childs@5# on homogeneous
isotropic plane-strain strips and circular cylinders, respectiv
From their boundary value problems, characteristic equati
were formed whose eigenvalues and eigenfunctions represe
inverse decay lengths and associated distributions of s
equilibrated states. Moreover, these eigenfunctions are com
and may be used in an eigenfunction expansion for represen
any self-equilibrated state. It is of interest to note that Synge@6#
gave the essence of the complete analysis by posing the e
problem and indicating the exponential form of the decay. But,
gave no solutions. The quantification of Saint-Venant’s princi

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, O
7, 1999; final revision, July 21, 2000. Associate Editor: J. W. Ju. Discussion on
paper should be addressed to the Editor, Professor Lewis T. Wheeler, Departm
Mechanical Engineering, University of Houston, Houston, TX 77204-4792, and
be accepted until four months after final publication of the paper itself in the AS
JOURNAL OF APPLIED MECHANICS.
392 Õ Vol. 68, MAY 2001 Copyright © 20
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was put on firm footing by Toupin@7# and Knowles@8# with their
strain energy inequality theorems. These theorems bounded
attenuation rates to no greater than exponential decay. Fo
exceptionally comprehensive summary of the developments
Saint-Venant’s principle, the reader is referred to Horgan a
Knowles @9# and Horgan@10#.

A considerable body of literature on finite element calculatio
of decay rates and their corresponding eigenvectors is availa
viz., Rao and Valsarajan@11# on sandwich strip, Dong and Goe
schel@12# on laminated, anisotropic strip, Giavotto et al.@13# on
three-dimensional anisotropic cylinder, Huang and Dong@14# on
laminated, anisotropic circular cylinder, Okumura et al.@15# on
laminated strip, Goetschel and Hu@16# on general cross-section
and Kazic and Dong@17# on restrained torsion. Of these, on
Kazic and Dong@17# considered the solution a three-dimension
solution of a particular end restraint condition by means of
eigenvector expansion of the end effects with the establis
eigenvectors. Besides these numerical studies, mention shou
made of analytical representations of end effects based on ana
cal solutions of boundary value problems; see, for example, G
gory and Gladwell@18# on the clamped isotropic strip, Horga
@19# on composites, and Savoia and Tulluni@20# and Vel and
Batra@21# on orthotropic strips. More information on such prev
ous work can be found in Horgan’s review state-of-the-art~@10#!.
Herein, Kazic and Dong’s approach@17# is followed for append-
ing end solutions to Saint-Venant solutions in order to satisfy a
prescribed pointwise tractions at the tip end and restraint co
tions at the root end.

In the next section, the exponential solution form is substitu
into the governing equation of the previous paper to give an a
braic eigenproblem. The solutions to this equation and its adj
in terms of their right and left-handed eigenvectors are sta
Bi-orthogonality properties on these two systems of eigenvec
are discussed. An expansion theorem that employs these
orthogonality conditions is given. Then, the analyses of end
fects at both the tip and root ends are addressed. Example
offered to illustrate the solution method.
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The Algebraic Eigenproblem
For determining eigendata to represent end effects, the foll

ing discrete system of second-order ordinary differential equat
in terms of nodal displacementU(z) is used.

K1U,zz1K2U,z2K3U50 (1)

This equation was given in DKL@1# as Eq.~7!. Recall thatK1 and
K3 are symmetric andK2 is antisymmetric. The solution to Eq
~1! for a self-equilibrated state has the form

U~z!5U0e2gz (2)

whereU0 is a vector describing the nodal displacement distrib
tion andg is the inverse decay length. Substituting Eq.~2! into
Eq. ~1! and suppressing the multiplicative factore2gz lead to a
second-order algebraic eigenvalue problem.

~g2K12gK22K3!U050 (3)

This equation may be reduced to first-order form by introduc
U1 as

K3U15gK3U0 . (4)

Inserting Eq.~4! into Eq. ~3! and combining the results yield

F 0 K3

K3 K2
G FU0

U1
G5gFK3 0

0 K1
G FU0

U1
G or AQr5gBQr (5)

whereQr is the right-handed generalized coordinate state vec
If M denotes the dimension ofU0 , then 2M eigenvaluesg’s are

contained in algebraic eigensystem~5!. They can be real, comple
conjugate pairs as well as have zero value. Nonzero roots re
sent attenuation rates of self-equilibrated effects into the inte
of a cylinder with realg’s expressing monotonic decay and com
plex g’s sinusoidal decay. The real roots occur in positive a
negative pairs, i.e.,6g j , and the complex conjugate roots a
foursomes with positive and negative real parts, i.e.,6g jR
6 ig j I . Positive realg j ’s and complex roots with positive rea
parts g jR’s represent decay into the regionz>0, which in our
coordinate system~see@1#, Fig. 1! applies to tip end conditions
The other subset of eigendata with negative real2g j ’s and nega-
tive real parts2g jR’s of complexg j ’s are for root end condi-
tions. The eigenvalue with the smallest magnitude real par
important, as it defines the inverse decay length with the furth
penetration into the interior. Zero roots represent rigid-body tra
lations and rotations and the extension, bending, and torsion fi
of Saint-Venant’s solutions. Certain computer algorithms requ
B of algebraic eigensystem~5! to be nonsingular, so that the rigid
body modes inK3 must be suppressed prior to the eigensolut
process.

The solution to Eq.~5! may be stated as a transformation to
right-handed system of normal coordinatesX, i.e.,

Qr5FX (6)

whereF is the right modal matrix. In view of Eq.~4!, F may be
partitioned into upper and lower parts.

Qr5FU0

U1
G5FFu

Fl
GX5F Fu

FuGGX (7)

whereG is a diagonal matrix of the eigenvalues.

Adjoint Eigenproblem, Bi-Orthogonality, and Eigenvec-
tor Expansion

The adjoint problem to Eq.~5! in terms of left-handed genera
ized coordinatesV0 andV1 is

F 0 K3

K3 2K2
G FV0

V1
G5gFK3 0

0 K1
G FV0

V1
G or ATQl5gBQl .

(8)
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Solution of Eq. ~8! consists of a transformation to left-hande
normal coordinatesY

Ql5CY. (9)

The eigenvalues of Eq.~8! are the same as those of Eq.~5! with C
as the left modal matrix. The left modal matrixC may be parti-
tioned into upper and lower parts.

Ql5FV0

V1
G5FCu

Cl
GY5F Cu

CuGGY (10)

The right and left-handed eigenvectors satisfy the
orthogonality relations

CTBF5diag~Bn!; CTAF5diag~gnBn!. (11)

In view of the upper and lower half forms given by Eqs.~7! and
~10!, bi-orthogonality relations~11! expressed entirely in terms o
their upper half forms appear as

Cu
TK3Fu1gmgnCu

TK1Fu5dmnBn

~gm1gn!Cu
TK3Fu1gmgnCu

TK2Fu5dmngnBn . (12)

With these bi-orthogonality relations, a dual expansion theor
can be formulated. LetF be an arbitrary displacement vecto
which expressed in terms of the right-handed eigenvectors, ta
the form

F5Fua (13)

with a representing the amplitudes. These amplitudes are t
given with the aid of Eq.~12! as

a5diag~1/Bn!~Cu
TK31gn

2Cu
TK1!F. (14)

Analysis of End Effects
Let U(z) and s(z) denote the total displacement and stre

fields of a given problem that satisfy the pointwise prescrib
tractions and restraints at the two ends. In our discussion, it sh
be understood thats(z) and any other stress vector to be intr
duced denote an array by concatenation of the six componen
each gaussian integration point taken over all such points o
element and over all elements comprising the discretized mo
The total displacement and stress fields,U(z) and s(z), can be
written as

U~z!5USV~z!1Uend~z!; s~z!5sSV~z!1send~z! (15)

where USV(z) and sSV(z) denote the displacement and stre
fields of the Saint-Venant solution having equipollent result
forces and moments as those ofU(z) and s(z) andUend(z) and
send(z) are self-equilibrated displacement and stress fields of
end effects. The Saint-Venant stress field is given by

sSV5C~b1uSV1b2uSV,z! (16)

whereuSV is the element level form of the displacement vec
andb1 andb2 are strain-transformation matrices given by Eq.~5!
of DKL @1#. From Eq.~15!, the end effects are seen as the diffe
ence between the Saint-Venant solution and that for the pointw
prescription of the end conditions. Moreover, these end effe
may be separated into two parts, one for decay from the tip
and the other for decay from the root end. Expressing these
effects in terms of a modal expansion of their eigenvectors
ables Eq.~15! to be recast as

U~z!5USV~z!1†F1E1@g j z# F2E2@g j~L2z!#‡H a1

a2
J (17)

whereF1 , F2 and s1 , s2 contain the modal displacement an
stress columns of the self-equilibrated states,a1 and a2 are un-
known amplitudes, andE1@g j z# and E2@g j (L2z)# are diagonal
matrices containing the inverse decay length data, i.e.,

E1@g j z#5diag~e2g j z!; E2@g j z#5diag~e2g j ~L2z!!. (19)
MAY 2001, Vol. 68 Õ 393
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According to Saint-Venant’s principle, the end effects are r
sonably confined to the neighborhood at each end. First, cons
the case of a sufficiently long cylinder where it is possible
consider the effects on one end completely uncoupled from
other end. Then, the two ends are treated as follows.

Displacement Boundary Conditions at Root End zÄL .
Representations~17! and ~18! appropriate for the root end hav
the forms

U~z!5USV~z!1F2E2@g j~L2z!#a2 ;
(20)

s~z!5sSV~z!1s2E2@g j~L2z!#a2 .

Let UL be the nodal values of the prescribed nodal restraints a
root end, i.e.,UL5U(L). Settingz5L in Eq. ~20! and noting that
E25I for z5L give

UL5USV~L !1F2a2 or F2a25UL2USV~L !. (21)

The solution for the amplitudesa2 can be obtained by means o
Eq. ~14!.

a25diag~1/Bn!~C2
TK31gn

2C2
TK1!@UL2USV~L !# (22)

It may also be obtained by a least-squares solution by
multiplying both sides of Eq.~21! by F2

H , where superscriptH
denotes conjugate transpose, to square up the coefficient mat
a2 and then inverting.

a25@F2
HF2#21F2

H@UL2USV~L !# (23)

A least-squares solution was used by Kazic and Dong@17#.

Traction Conditions at Tip End zÄ0. The displacement
and stress representations for the tip end have the form

U~z!5USV~z!1F1E1@g j z#a1 ; s~z!5sSV~z!1s1E1@g j z#a1 .

~24!

At the tip end, only stress components (sxz ,syz ,szz) are in-
volved in the prescribed traction. LetS denote these prescribe
stress components ins of solution vector~24! evaluated atz50
for the N Gaussian points of the total discretized model of t
cross section.

ST5@sxz1 ,syz1 ,szz1 ,sxz2 ,syz2 ,szz2 ,¯ ,sxzN,syzN,szzN#uz50

~25!

Extracting the same components fromsSV ands1 , denoting them
asSSV andS1 , and invokingE1(0)5I allow the traction boundary
conditions atz50 to be written as

S5SSV~0!2S1a1 or S1a15SSV~0!2S. (26)

Note thatS1 is rectangular whose row and column dimensions
N and the number of eigenvectors fromF1 used in the represen
tation. The accuracy of this representation is dependent on
number of modes used. It is usually possible to truncate a num
394 Õ Vol. 68, MAY 2001
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of the higher modes fromF1 without affecting the solution accu
racy of the dominant coefficients ina1 . However, the expression
of prescribed pointwise tractions at the Gaussian integra
points demands a significantly greater number of modes than
to merely define the coefficientsa1 . The least squares solution o
Eq. ~26! has the form

a15@S1
HS1#21S1

H@SSV~0!2S#. (27)

For mixed boundary conditions, it is possible to devise a sys
of equations, where displacement conditions are enforced at
nodal points and the stresses at the Gaussian integration p
within the elements. Therefore, any combination of end displa
ment and traction state is amenable for representation.

In the case of a short cylinder and/or a cylinder in which t
fundamental inverse decay length is such that it is not possibl
uncouple the effects on the two ends, then the coefficientsa1 and
a2 must be solved simultaneously using Eqs.~17! and~19!. Such
cases occur in highly anisotropic materials~see Choi and Horgan
@22,23#, for example! and thin-walled members. Enforcing appro
priate conditions on both ends provides the equations for solu
of the aj . For a short cylinder, it should be recognized that
three-dimensional finite element analysis of the cylinder may
numerically more expedient. The only drawback to a thre
dimensional analysis is that it does not yield any information
the inverse decay lengths.

Examples
Consider the two rectangular cross sections as shown in Fig

~1! a homogeneous, isotropic beam and~2! a two-layer630 deg
angle-ply composite beam, both of unit heightH and the same
height-to-width ratioH/W of 1.5. Let E and n50.25 denote
Young’s modulus and Poisson’s ratio of the isotropic mater
The material properties of the composite material are

EL

ET
510;

GLT

ET
50.4;

GTT

ET
50.3; nLT50.3; nTT50.25

(28)

and theCi j properties, transformed to the630 deg orientations
with respect to the coordinate axes, have the values

Fig. 1 Cross sections of two beams
C5ET3
1.7033 0.3148 2.0804 • 61.0194 •

0.3148 1.0831 0.3781 • 60.0549 •

2.0804 0.3781 6.2848 • 62.9483 •

• • • 0.3750 • 70.0433

61.0194 60.0549 62.9483 • 2.0705 •

• • • 70.0433 • 0.3250

4 . (29)
Transactions of the ASME
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Completely fixed conditions at the root end were assumed for b
cases, i.e., all displacement components are zero. Loading a
tip end consisted of extension, bending, and torsion, and t
assumed distributions are shown in Fig. 5.

For the isotropic beam, one-quarter of the cross section
modeled ~64 elements/225 nodes/675 degrees-of-freedom! to-
gether with combinations of symmetry/antisymmetry interfa
conditions about the two planes of structural symmetry. In
two-layer cross section, the entire cross section was modeled~128
elements/433 nodes/1299 degrees-of-freedom!.

The subsets of the lowest eigenvalues for these two beam
given in Tables 1 and 2. These eigenvalues define the inv

Table 1 Subset of eigenvalues for isotropic beam for decay
from tip end

Extension BendingÕy-axis
Mode g Mode g

1,2 4.209062.2752i 1 4.0816
3,4 6.345363.3558i 2,3 6.212061.9922i
5 7.7293 4,5 11.238664.1136i

6,7 8.818662.6749i 6 11.2815
8,9 10.767363.0861i 7,8 11.592163.0396i
10 12.5522 9,10 12.669363.5974i

BendingÕx-axis Torsion
Mode g Mode g

1,2 6.707863.0853i 1,2 4.119461.1796i
3,4 7.670963.3558i 3 8.2404
5 8.0149 4,5 8.664962.5180i
6 10.3409 6,7 11.597363.9789i

7,8 11.191562.9693i 8 12.7278
9,10 13.940263.3478i 9,10 14.227963.6504i

Table 2 Subset of eigenvalues for two-layer beam for decay
from tip end

Mode g Mode g

1 1.8492 11,12 2.962461.1922i
2,3 2.109260.7653i 13,14 3.115162.8740i
4 2.2599 15 3.2565

5,6 2.528860.9451i 16,17 3.746464.1427i
7,8 2.633962.7230i 18,19 3.859061.9040i
9,10 2.958163.0187i 20,21 4.036761.4298i
Journal of Applied Mechanics
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decay lengths from the tip end. There are an equal numbe
eigenvalues of the same magnitude but with negative real p
applicable for decay from the root end. Since the dimensionH for
both cross sections was unity, the eigenvalues are normalized
respect to the depth, i.e.,g5ḡ/H where ḡ is that for a cross
section with a specific height and aH/W ratio of 1.5. Comparing
the real parts of the eigenvalues between Tables 1 and 2 sh
that those for the two-layer angle-ply composite cross section
smaller, indicating longer inverse decay lengths or greater
tances needed to attenuate end effects, an observation of the
of anisotropy that has been reported by other researchers.

For a fully restraint condition at the root end, all displaceme
components must vanish. In Fig. 2 is shown a measure of
deviation from zero of this condition as a function of the numb
of modes used in the modal representation. The cumulativeError
is defined as the sum over all nodes of the finite element mode
the normalized displacement, i.e.,

Error5 (
nodes

A~uend1uSV!
21~vend1vSV!

21~wend1wSV!
2

Umax
2

(32)

where (uend,vend,wend) are components of the end solution, an
Umax is the largest total displacement of the Saint-Venant solut
for a particular load condition. In the case of the two-layer bea
the designations of extension, bending, and torsion modes
meant as the predominant behavior inasmuch as there is cou
of all of these behaviors in this cross-section. It is seen that w
an increasing number of modes, the cumulative error is redu
accordingly and their magnitudes are reasonably small.

Bar graphs of dimensionless amplitudes ofa1 , or amplitude
ratiosa i /amax whereamax is the largest amplitude, are shown
Figs. 3 and 4 to show the participation of each mode in the mo
summation. The occurrence of a pair of identical bars indica
complex conjugate roots, and a single bar is for a real eigenva
For the isotropic beam in Fig. 3, recall that one-fourth of the cr
section was modeled with symmetry/antisymmetry interface c
ditions along the two planes of structural symmetry so that
amplitudes for each case are associated with its own set of ei
vectors. The amplitudes in Fig. 4 for the two-layer beam for
three loading cases are associated with the same set of eigen

For loading conditions at the tip end, an axial forcePz , a bend-
ing momentMx about thex-axis and a torqueMz were consid-
ered. Unit values of these loads were applied in the form of u
Fig. 2 Errors in representation of fully restraint displacement conditions
MAY 2001, Vol. 68 Õ 395
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form stress blocks over various portions of the cross section
shown in Fig. 5. Also, shown on this figure are the se
equilibrated stress stated for extension and bending. That for
sion is not given because of the difficulty in presenting the Sa
Venant torsional stress distribution clearly, however, it w
nevertheless a self-equilibrated stress state. While both cross
tions were analyzed, only results for the two-layer compos
cross section are shown herein. Results for the isotropic c
section describe the same sort of behavior as the two-layer b
and do not enhance the discussion, so they are not included

A plot of szz for extension along they-axis atx50 is shown in
Fig. 6, and that for bending in Fig. 7. Two sets of shear stres
syz andsxz , on either sides of the linesy50 andx50 along the
x andy-axes are shown in Figs. 8 and 9. With an increasing
number of modes, the representations, converge onto their res
tive prescribed loading conditions. It is remarked that sin
stresses are obtained from differentiation of the displacement
stress eigenvectors are inherently less accurate than the disp
ment eigenvectors. Therefore, more modes are needed for a
parable accuracy in the representations of stresses than o
displacements. No plots of the amplitudes of the various mo
participating in the representations are given, but they would
pear very much like those in Fig. 4 for representation of the d
placement end conditions where the fundamental modes sho
greater presence in comparison with the higher modes.

Concluding Remarks
This paper was devoted to the representation of end effec

the displacements and stresses of any arbitrary self-equilibr

Fig. 3 Normalized amplitudes for homogeneous, isotropic
beam
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state. Such states are typical at the tip and root ends, when
boundary conditions on the applied tractions and/or prescri
displacements do not follow the distributions of the Saint-Ven
solutions. As both fields are associated with the same resu
forces and/or moments, the difference between them must
self-equilibrated state.

The end effects are represented by eigendata extracted fro
algebraic eigensystem. This eigenproblem is formed by using
exponential decaying displacement form in the homogeneous

Fig. 4 Normalized amplitudes for two-layer Á30 deg compos-
ite beam

Fig. 5 Prescribed traction conditions at tip end
Transactions of the ASME



Fig. 6 Stress szz for PzÄ1 in two-layer Á30 deg composite
beam
Journal of Applied Mechanics
Fig. 7 Stress szz for MxÄ1 in two-layer Á30 deg composite
beam
Fig. 8 Stress sxz for MzÄ1 in two-layer Á30 deg composite beam

Fig. 9 Stress syz for MzÄ1 in two-layer Á30 deg composite beam
MAY 2001, Vol. 68 Õ 397
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placement equations of equilibrium. The real parts of the eig
values convey information on the inverse decay lengths and t
corresponding eigenvectors are displacement distributions of
self-equilibrated states. Stress eigenvectors can be formed by
ferentiation of the displacement eigenvectors according to
strain-displacement equations. The algebraic eigensystem an
adjoint system provide complete sets of right and left-han
eigenvectors which are interconnected by bi-orthogonality re
tions. An dual expansion theorem can be stated with the
orthogonality relations. The representation of displacement
effects can be made by means of this expansion theorem, or i
case of end tractions by means of a least-squares solution.

Two example beams, one with a homogeneous, isotropic c
section and the other with a two-layer630 deg angle-ply com-
posite cross section, were given to illustrate the representatio
various end effects.
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Buckling of Free Infinite Strips
Under Residual Stresses and
Global Tension
Long free strips of small thickness frequently show a wavy surface being the conseq
of buckling due to residual stresses. The paper deals with the derivation of the c
sponding relations under conditions which are frequently met in the case of edge
buckling of rolled strips or in deployable structures. It is shown that an increasing glo
tension force does not only lead to increased critical residual stress intensity but
produces shorter buckling waves concentrated towards the edges of the strip. By
ducing dimensionless quantities, diagrams and formulas are provided which allow
determination of critical loading combinations. Asymptotic considerations are also
sented. @DOI: 10.1115/1.1357519#
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1 Introduction

In a recent paper@1# the authors have presented analytical a
numerical considerations of buckling phenomena in thin plate
strips under in-plane loads which typically appear during rolli
and leveling of sheet metal. Buckling due to self-equilibrati
residual stresses, caused by the rolling process, possibly in
junction with global tensile stresses~denoted there as ‘‘rolling
buckling’’! as well as buckling during the levelling process~de-
noted there as ‘‘stretching buckling’’ or ‘‘towel buckling’’! were
considered. Analytical estimates were derived and compa
against results of numerical simulations and field observatio
Different buckling phenomena appearing during the rolling p
cess have been investigated in several other papers, as, fo
stance, in the classical one by U. Fischer@2#, or more recently by
Y. Tomita and H. Shao@3# or K. Komori @4#.

In @1# jumps of buckling modes due to variation of the glob
strip tension were found on the basis of the derived analyt
solutions. A more detailed analysis, which is presented now, c
firms the estimations derived in@1# and focuses on the variation o
the buckling pattern with increased global strip tension. It
shown that, in addition to mode jumps, the buckling patte
changes continuously over a wide range of the tension fo
which was not found in@1#. This continuous mode change
mathematically described by the conditions for envelopes of fu
tions with varying parameters. Further extensions in compari
to @1# are that a wide variety of different characters of resid
stress distributions are considered and analytical closed-form
lutions are provided for describing the buckling modes.

In @5# strip buckling under homogeneous longitudinal tens
stesses is considered under specific boundary conditions. Her
boundary conditions are rather trivial~infinitely long strip! and the

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, Ju
14, 2000; final revision, September 15, 2000. Associate Editor: S. Kyriakides.
cussion on the paper should be addressed to the Editor, Professor Lewis T. Wh
Department of Mechanical Engineering, University of Houston, Houston, TX 772
4792, and will be accepted until four months after final publication of the paper it
in the ASME JOURNAL OF APPLIED MECHANICS.
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residual membrane stress distributions are assumed to be
equilibrated. Despite this, buckling can happen under exte
tension.

Although the problem treated here is of general interest in p
buckling analysis the results are of practical relevance, too;
instance, with respect to the control of the rolling process in s
rolling mills or the reliability of the deployment of deployabl
structures containing strip shaped members. Regarding flatne
cold rolling of strip metal an overview on the current literatu
can be found in@6#.

2 Formulation of the Mathematical Model
A strip of infinite length ~representing, for example, a she

metal in the rolling path! with the width B and a plate bending
stiffnessK5Et3/(12(12n2)) ~with E being the Young’s modu-
lus, n the Poisson’s ratio, andt the thickness!, is loaded by a
self-equilibrating residual membrane force distributionRnxx(y)
5Nĝ(y) and a constant global tensile membrane forceN0 . Thus,
the membrane force distribution is~independent of the longitudi-
nal coordinatex! given by

nxx~y!5Nĝ~y!1N0 , (1)

~see Fig. 1!.
The following dimensionless quantities are introduced:

h5y/B, with 2B/2<y<B/2,2 1
2<h< 1

2,

ĝ~y!→g~h!,nxx→nxx~h!5Ng~h!1N0 , (2)

Ñ5
NB2

Kp2 , Ñ05
N0B2

Kp2 .

BecauseRnxx must be self-equilibrated the following conditio
must hold:

E
21/2

11/2

g~h!dh50, i.e., for symmetricalg~h!:

E
0

1/2

g~h!dh50. (3)
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In order to capture a wide range of symmetrical residual me
brane force distributions which typically lead to ‘‘edge wav
buckling,’’ i.e., a pattern showing waves with maximum wav
heights at the edges of the strip, the following distributions a
assumed:
~a! Cosine distribution:

gc~h!5Cmcosmph 21 with m51,2, . . . and2
1
2<h< 1

2.
(4)

The equilibrium condition forRnxx(h) leads to

Cm5
1

2 F E
0

1/2

cosmph dhG21

. (5)

~b! Polynomial distribution:

gp~h!5
1

m
@12~m11!~2uhu!m# with m51,2, . . . . . (6)

which also complies with the equilibrium condition~3!.
The superscripts ‘‘c’’ and ‘‘ p’’ refer to the cosine and the para

bolic residual membrane force distributions, respectively.
Due to the variable exponentm in gc(h) and gp(h) the re-

quired large variability of residual stress distributions can be p
vided ~see Fig. 2!. It should be noted that for the cosine distribu
tion increasing exponentsm lead to wider regions of compressio

Fig. 1 The strip buckled under residual membrane forces and
global tension

Fig. 2 Typical residual membrane force distributions; „a… ac-
cording to „4…, „b… according to „6….
400 Õ Vol. 68, MAY 2001
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membrane forces, while in the case of polynomial distributio
higher m-values are typical for residual compressive forces c
centrated in regions close to the edges of the strip. Form52 both
types of force distributions look very similar. As a consequence
this fact, form52 the results for cosine and polynomial distrib
tions are almost identical.

Both distributions, i.e., the cosine and the polynomial one, le
to

g~h56
1
2!521. (7)

This means that a positive value ofN in Eq. ~1! corresponds to
compressive residual membrane forces in the edge regions o
strip.

In order to apply the Ritz approach as described in@1# we
introduce a Ritz-ansatz, i.e., a trial function, for the buckli
pattern

w~x,h!5qwn~x,h!5q cos
px

l
~2uhu!n~signh!k, (8)

with k51 .... antisymmetrical mode;k52 . . . symmetrical
mode.

As shown in @1# corresponding symmetrical and antimetric
modes lead to the same critical residual stress intensities
therefore, (signh)k in Eq. ~8! can be omitted.

Both the half-wave lengthl and the exponentn, which allow a
wide variety of the buckling pattern, have to be determined
propriately in order to estimate the relevant, i.e., the minimu
buckling force amplitude as a function of the global tension for
Nc(N0) or Np(N0) for a given exponentm in Eq. ~4! or ~6!,
respectively.

3 Analysis
We follow the ‘‘classical’’ concept of minimization of the tota

potential energyf of a thin plate deformed also in the directio
normal to the middle surface and subjected to a membrane f
stateRnxx1N0 . The expression for the total potential energy c
be taken from the literature; see, e.g.,@7#, and specialized to this
problem reads as follows:

fB5
K

2 E
V
H S ]2w

]x2 1
]2w

]y2 D 2

22~12n!

3F]2w

]x2

]2w

]y2 2S ]2w

]x]yD 2G J dV, (9)

fM5
1

2 EV
~Rnxx1No!S ]w

]x D 2

dV, (10)

fN0
52

N0
2LB

2Et
, f5fB1fM1fN0

. (11)

The application of Gauss’s theorem leads to the followi
modified formulation offB

fB5
K

2 E
V
S ]2w

]x2 1
]2w

]y2 D 2

dV1K~12n!E
]V

]w

]x

]

]y S ]w

]s Dds.

(12)

fB is the contribution tof due to bending,fM that due to the
membrane forces, andfN0

is the potential energy of the boundar
force N0 at x50 andx5L@B, which, however, does not play
any further role in the linearized theory.

According to the procedure with a single-term shape funct
we have just one degree-of-freedom, which is related to the
plitude q of the buckling mode~see Eq.~8!!. Stationarity of
f(qwn) requires]f/]q50, which immediately leads to the equa
tion

fB~wn!1fM~wn!50. (13)
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If we now insert the membrane state according to Eq.~4! or ~6!
which depends on a positive constantN ~see Eq.~1!!, the Eq.~13!
can be rewritten with the dimensionless variables defined by
~2!:

ÑfM ,N8 ~wn!1Ñ0FM ,N0
8 ~wn!1fB~wn!50, (14)

wherefM ,N8 andfM ,N0
8 are the contributions tofM due toÑ51

andÑ051, respectively. This leads to

Ñn52
fB~wn!1Ñ0fM ,N0

8 ~wn!

fMN8 ~wn!
(15)

as critical residual membrane force intensity corresponding to
Ritz-Ansatz with exponentn.

With Eq. ~8! after some algebraic manipulation the followin
mathematical structure of Eq.~15! is obtained:

Ñn52F Ñ0

1

2n11
1

~B/ l !2

2n11
2

8n~n21!

p2~2n21!
1

16~ l /B!2n2~n21!2

p4~2n23!

1
8~12n!n

p2 GY F2E
0

1/2

g~h!~2h!2ndhG . (16)

The right-hand side of Eq.~16! contains a further unknown
entity, namely the half-wavelengthl in thex-direction—expressed
in the dimensionless quantityl /B. Since we look for the minimum
possible value of the buckling parameterÑn , we find l by mini-
mizing Ñn with respect to this quantity:

dÑn

d~ l /B!
50. (17)

This additional relation allows us to findl min and, as a conse
quence,Ñnmin(Ñ0). In the following text these quantities will be
used without the subscript ‘‘min.’’ Equation~17! yields, after
simple calculation,

l /B5Ak (18)

with

k5
p2

4 S 2n23

n2~n21!2~2n11! D
1/2

. (19)

The relevant exponentn will be determined below.
It should be mentioned thatl /B does not depend on the a

sumed residual membrane force distribution. This is beca
g(h), which determines the membrane force distribution, appe
only in the denominator of the r.h.s. of Eq.~16! which does not
containl /B. Hence it disappears when Eq.~17! is evaluated.

It can be shown that the contribution due to]2w/]y2 in the
bending related portion of the potentialf ~see Eq.~9!! vanishes
for n50 and forn51. For other values of the exponentnPR1 in
Eq. ~8! the conditionn.

3
2 must be met in order to achieve phys

cally meaningful results~i.e., no singularities in the correspondin
strain energy density!.

Figure 3 shows this result in graphical form.
For n.1.73 increasingn leads to decreasingl. The interval

@1.5, 1.73# appears to be aphysical; however, it is of no relevan
because, as will be shown below, the solutions either withn
51.0 orn.1.73 lead to smaller critical residual membrane for
intensities than those withnP@1.5,1.73#.

For the cosine distribution the solution of the Ritz approa
described above leads to

Ñn
c~Ñ0!5 f 1

c~n!1 f 2
c~n!Ñ0 (20)

with
Journal of Applied Mechanics
Eq.
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f 1
c~n,m!52F 1

2n11

1

k
2

8

p2

n~n21!

2n21
1

16

p4

n2~n21!2

2n23
k

1
8~12n!n

p2 GY F2E
0

1/2

@Cm~cosph!m21#

3~2h!2ndhG (21)

and

f 2
c~n,m!521YF2~2n11!E

0

1/2

@Cm~cospn!m21#

3~2h!2ndhG , (22)

with k given in Eqs.~18! and ~19!.
For the parabolic distribution of the residual membrane fo

we obtain

Ñn
p~Ñ0!5 f 1

p~n!1 f 2
p~n!Ñ0 , (23)

with

f 1
p~n,m!5

2

p2 ~2n1m11!H 2~n21!F S 2n11

2n23D 1/2

2
2n11

2n21G
12~11n!~2n11!J (24)

and

f 2
p~n,m!5

~2n1m11!

2n
. (25)

These functions are shown in graphical form in Fig. 4.
For a givenm, representing the character of the residual me

brane force distribution, the critical intensityÑn(Ñ0) represents
for every exponentn a straight line in theÑ2Ñ0-diagram~Eq.
~23! is a linear relation!. Figure 5 shows this situation form51 in
the case of a cosine distribution of the residual membrane fo
This example is comparable with one of those considered in@1#.

This figure makes clear how the proper exponentn has to be
found as a function of the global tensionÑ0 and the given expo-
nent m: Finally, the critical residual membrane force intensi
must be

Ñ~Ñ0!5min
n

Ñn~Ñ0!. (26)

Fig. 3 Half-wavelength of the relevant buckling mode as a
function of the exponent n in Eq. „8…
MAY 2001, Vol. 68 Õ 401
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Fig. 4 Functions f 1,2
c ,p

„n ,m … for different exponents m; full lines refer to cosine
distributions, broken lines to parabolic distribution of the residual membrane force
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This meansÑ(Ñ0) is represented by the inner envelope as form
by the manifold of straight linesÑ(Ñ0) with a continuously vary-
ing exponentn.

As long as the lineÑn51.0(Ñ0) is below any otherÑn(Ñ0) line
with n.1.73, i.e., for 0<Ñ0<Ñ0* , this inner envelope is given
by thisÑn51.0(Ñ0) line. The valueÑ05Ñ0* , corresponds with the
situation where the buckling mode jumps from a pure twisting
a wavy pattern; see point A in the detail in Fig. 5. ForÑ0.Ñ0* ,
i.e., for the region in whichÑn(Ñ0) with n.1.73 is smaller than
Ñn51.0(Ñ0), this envelope is, for givenm, implicitly described by

F~Ñ,Ñ0 ,n!5Ñ2 f 1~n!2 f 2~n!Ñ050. (27)

Therefore, the condition for the envelope

]F

]n
52

d f1

dn
2

d f2

dn
Ñ050, (28)

yields

Ñ052
d f1

dnY d f2

dn
5Ñ0~n!. (29)

This way the critical intensity can be expressed as a functio
n only instead ofÑ(Ñ0):

Ñ~n!5 f 1~n!2 f 2~n!S d f1

dnY d f2

dn D (30)

Finally, Ñ(Ñ0) can be determined by evaluating Eqs.~29! and
~30! for continuously varyingn.

Equations~29! and ~30! require the first derivatives off 1(n)
and f 2(n) which are calculated numerically for cosine distrib

Fig. 5 Dependence of Ñn on Ñ0 for a cosine distribution of the
residual membrane force with mÄ1. The detail shows that n
«†1.5,1.73‡ is not relevant.
2001
ed

to
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tions of the residual membrane force and analytically for pa
bolic distributions. In the latter case these expressions read:

d f1
p

dn
5

4

p2 nH S 41
m21

n D F S 11
4

2n23D 1/2

2
2

2n21
1

3~12n!

n21

1~122n!G1
1

n S 21
m21

n
2

m11

n2 D
3F24S 11

4

2n23D 21/2 1

~223/n!2

1
4

~221/n!22
3~12n!

~121/n!2G J
d f2

p

dn
52

m11

2n2 . (31)

Figure 6 shows the residual membrane force intensitiesÑ(Ñ0)
for different exponentsm, and Fig. 7 shows how the half-wav
lengthl /B decreases with increasingÑ0 for different exponentsm.

Figure 5 shows that a sudden mode jump from the pure twis
mode, i.e.,n51, to a mode withn.1.73 appears at a certai
value of Ñ0 , denoted asÑ0* . In the case of a cosine-distributio
of the residual membrane force withm51 this jump appears a
Ñ0* '10. According to Eq.~19! the half-wavelength assigned t
the pure twisting mode (n51) goes to infinity; that means that
very long strip is just tilted over the whole length, compare@1#.

This is the reason why the lines in Fig. 7, showing the ha
wavelengthl /B in dependence of the global strip tensionÑ0 for
different exponentsm, must not be extrapolated for small value

Fig. 6 Dependence of the critical residual membrane force in-
tensity Ñ on the global strip tension Ñ0 for different exponents
m; full lines refer to cosine distributions, broken lines to para-
bolic distributions of the residual membrane force
Transactions of the ASME
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of Ñ0 ; they end atÑ05Ñ0* , where a jump of the half-wavelengt
l /B from a finite value to infinity~for an infinitely long strip!
happens.

For Ñ0.Ñ0* the buckling mode changes continuously, i.e.,n
increases monotonically and smoothly. Since for the parab
distribution the relationsÑn51.0(Ñ0) and Ñ(Ñ0), i.e., the enve-
lope, can be expressed in analytical form,Ñ0* can be determined
also in analytical form. This is, however, not so easy for t
cosine distribution, for which closed-form expressions are
available.

4 Asymptotic Considerations
The shape of the envelope might lead to the expectation o

asymptotic approach of the critical states to the boundary li
Ñ→Ñ0 for very largeÑ0 ; see@1#.

For parabolic distributions of the residual stresses asympt
considerations can be performed analytically. As mention
above, increasingÑ0 leads to increasingn and, due to Eq.~19!, to
decreasingl /B.

Due to this fact considerations of largeÑ0 can be performed on
the basis of expressions for largen. For very largen, n@1, we
come up with the following simplified formulas:

f 1→
16

p2 ~12n!n2, (32)

f 2→1, (33)

and

Ñ0~n!→ 64

p2

12n

m11
n3, (34)

and finally

Ñ~Ñ0!→ 16~12n!

p2 S p2~m11!

64~12n! D 2/3

Ñ0
2/31Ñ0 . (35)

Hence, it can be seen that the differenceÑ2Ñ0 grows with
increasing global strip tensionÑ0 in the order ofÑ0

2/3. Therefore,
the above-mentioned expectationÑ→Ñ0 for very large values of
Ñ0 , as argued in@1#, could not be confirmed.

5 Practical Observations
During strip metal rolling processes the global tension fo

usually is large enough to prevent the strip from buckling un
residual stresses. However, if this tension force is reduced a c
cal situation can be reached in which suddenly a wavy defor

Fig. 7 Dependence of the half-wavelength l ÕB on the global
strip tension Ñ0 for different exponents m; full lines refer to
cosine distributions, broken lines to parabolic distributions of
the residual membrane force
Journal of Applied Mechanics
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tion pattern can be observed. This pattern represents the p
buckling deformations initiated by bifurcation atÑ0(Ñ).

The corresponding buckling mode shows different ha
wavelengths, depending on the distribution and on the intensit
the residual membrane force distribution, see Fig. 8.

Figure 9 shows how the buckling pattern changes with incre
ing global tension forceÑ0 . IncreasingÑ0 leads to a concentra
tion of the buckles towards the edges of the strip and to a decr
of the buckling wavelength.

6 Conclusions
The buckling and post-buckling patterns of thin strips under

action of residual membrane forces and global tension show
teresting features: With rising global strip tension a single-mo
jump can be observed from the pure twisting mode to a wa
mode; then, as the global tension continues to increase, the b
ling mode remains wavy with continuously decreasing wa
lengths and waves concentrating more and more towards
edges of the strip.

It has been shown that the amplitudes, i.e., the intensities
different residual membrane force distributions which are criti

Fig. 9 Buckling patterns for different global tension forces Ñ0

Fig. 8 Dependence of the half-wavelength l ÕB on the intensity
of the residual membrane force distribution Ñ for different ex-
ponents m; full lines refer to cosine distributions, broken lines
to parabolic distributions of the residual membrane force
MAY 2001, Vol. 68 Õ 403
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with respect to buckling of a strip can be calculated analytically
functions of the global tension force. A wide range of charact
istic residual membrane force distributions has been consider

Formulas and diagrams are provided which, in combinat
with the dimensionless formulation presented in the paper, en
quick and simple estimation of the critical residual membra
force intensities. This is of practical importance, for instance
the case of buckling during the rolling process of thin strip me
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Stress Concentration Reduction at
a Reinforced Hole Loaded by a
Bonded Circular Inclusion
This paper considers analytically the stress concentration in an infinite plane loaded
circular inclusion, which is bonded to a reinforced hole in the plane. The pulling forc
the inclusion is modeled by distributed body force. The infinite plane, the reinforced
and the circular inclusion can be of different elastic properties. Airy stress function
body force potential was used to solve the problem analytically. Numerical results
that the maximum tensile hoop stress at the hole boundary in the plane can be redu
becoming negligible if an optimum stiffness ratio between the plane and the riv
chosen (normally a harder material for the reinforced ring comparing to the plane
needed). An optimum thickness of the reinforced ring can also be determined to fu
reduce the hoop stress concentration. Therefore, the results of the present study pro
new theoretical basis for designing a reinforced rivet hole.@DOI: 10.1115/1.1357869#
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1 Introduction
Stress concentration at a hole loaded by an elastic inclusio

one of the classical problems in linear elasticity~@1#!. One main
application of the inclusion problems is in the design of riv
connected structures and components~e.g.,@2,3#!. Since the early
20th century, engineers, mathematicians, and experimenta
have worked on the inclusion problems in various branches
engineering and mechanics.

One of the first experimental studies on the stress concentra
due to rivet load is the photoelastic experiment done by Coker@4#
while the first theoretical treatment is apparently done by Brick
@5#. Among the circular inclusion problems, an elastic pla
loaded by a pinned-rivet has received the most attention~e.g.,
@6–15#, and others!. One simplified approach is to assume t
circular inclusion or the rivet as rigid~@9,16–18#!. When the elas-
tic circular inclusion is bonded to the elastic plane, exact solut
can normally be obtained~e.g.,@19–23#!. However, when separa
tion is allowed to develop between the plane and the circu
inclusion under external loads, numerical approach is norm
required to solve the resulting equations~@18,24–31#!. Because
the maximum tensile stress concentration is located at the
boundary, the idea of reinforcing the hole boundary has been
posed~@3,32–38#! and has long been used in practice. The re
forcement is normally made of a thicker rim of the same mate
around the rivet hole~@3,39,40#!.

In this paper, we propose a new approach that a different
terial for the reinforced ring is used, instead of using a ‘‘compac
rim approach~@3#!. Another new feature of the present analysis
the use of body force in modeling the rivet-load, instead of
suming a concentrated load located at the center of the circ
inclusion ~e.g., @6,18#!. The idea of modeling rivet force as un
form distribution body force is apparently from Hyer and Klan
@14#, and this approach has further been extended to case of
uniform distributed load by Ho and Chau@23#. The same ap-
proach has also been used to consider the stress in finite
loaded by a bonded-rivet made of a different material~@41#!. In
fact, except for the recent studies by Ho and Chau@23,41#, none
of the previous studies allow the rivet and the elastic plane to h

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, Ju
5, 2000; final revision, Oct. 19, 2000. Associate Editor: J. R. Barber. Discussio
the paper should be addressed to the Editor, Professor Lewis T. Wheeler, Depa
of Mechanical Engineering, University of Houston, Houston, TX 77204-4792,
will be accepted until four months after final publication of the paper itself in
ASME JOURNAL OF APPLIED MECHANICS.
Copyright © 2Journal of Applied Mechanics
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different elastic properties. The main motivation of assuming
different material for the rivet steps from the application of t
elastic solution to steel rivet-rock panel systems in cladding w
design~@23#!.

To simplify our analysis and to model the epoxy sealed c
nections in rock panel systems, only the case of bonded inclu
was considered. And our main focus will be on the tensile ho
stress at the reinforced hole, as the hoop stress has long
recognized as the most important stress around the hole~@42#!.

2 Mathematical Formulation
For two-dimensional stress analysis in cylindrical coordina

(r ,u), we adopt the Airy stress functionw with nonzero conser-
vative body force~@22#!:

s rr 5
1

r

]w

]r
1

1

r 2

]2w

]r 2 1V,

s ru52
]

]r S 1

r

]w

]u D , suu5
]2w

]r 2 1V (1)

where V is the conservative body force potential. For isotrop
elastic materials, substitution of these stress components into
compatibility equation leads to the following governing equati
for w:

¹4w5¹2¹2w522S k21

k11D¹2V (2)

where

¹25
1

r

]

]r S r
]

]r D1
1

r 2

]2

]u2 (3)

is the plane Laplacian operator in polar form. The tw
dimensional elastic constantk equals to 3–4n for plane strain and
~32n!/~11n! for generalized plane stress, wheren is the Poisson’s
ratio of the material.

For the reinforced rivet problem shown in Fig. 1, the stre
must be bounded in Domain II whenr approaches zero, while th
far-field stress must decay to zero asr approaches infinity. On the
interface between Domains I and III~i.e., the infinite plane and the
reinforced ring, respectively!, the continuities between traction
and displacements must be enforced. The rivet load is transm
from the rivet~Domain II! to the infinite plane~Domain I! through
the contact with the reinforced ring~Domain III!. In particular, the
following conditions are prescribed onr 5R:
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s rr
~3!~R,u!5s rr

~1!~R,u!, (4)

s ru
~3!~R,u!5s ru

~1!~R,u!, (5)

ur
~3!~R,u!5ur

~1!~R,u!, (6)

uu
~3!~R,u!5uu

~1!~R,u!, (7)

whereu is the displacement and the bracketed superscripts de
the Domain number. The first two of these equations represen
continuities in normal and shear tractions, whilst the latter t
represent continuities in radial and tangential displacements. S
lar continuity conditions between Domains II and III onr 5a can
be obtained by replacing the superscript~1! by ‘‘ ~2!’’, and R by
‘‘ a’’ in ~4!–~7!.

3 Determination of Stresses
As shown in Fig. 1, one new feature of the present analysi

that the rivet load is modeled by uniform distributed body for
on the rivet instead of considering a concentrated force at
center of the rivet~e.g., @6#!. The body force potential for this
uniform distributed body force was given by Karasudhi@22#:

V52 f 0r cosu (8)

wheref 0 is the magnitude of the uniform distributed load~in force
per unit volume!. The total rivet force per unit thicknessP ~shown
in Fig. 1! can be determined byf 0pa2. The normal stresses in
duced by this body force potentialV is proportional to cosu. In
view of this, the following forms of Airy stress functions fo
Domains I–III are proposed~@23#!:

w~1!5 f 0R2FAru sinu1Br ln r cosu1
CR2 cosu

r G , (9)

w~2!5 f 0Dr 3 cosu, (10)

w~3!5 f 0FEr3 cosu1FR2ru sinu1GR2r ln r cosu

1
HR4 cosu

r G , (11)

whereA, B, C, D, E, F, G, andH are unknown constants to b
determined by the continuity conditions. Note that both t
boundedness condition at the center and the decay conditio
infinity are identically satisfied by these choices.

Substitution of~8!–~11! into ~1! leads to the stresses in terms
the unknown constants. Integration of these resulting stre

Fig. 1 A sketch for a circular elastic inclusion embedded into
a reinforced hole in an elastic plane. The rivet load is modeled
by uniformly distributed body force. Domains I, II, and III are the
elastic plane, the circular inclusion, and the reinforced ring.
406 Õ Vol. 68, MAY 2001
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yields the expressions of displacements in terms of the unkn
constants. More specifically, it is straightforward to show the
lidity of the following expressions:

Domain I:

s rr
~1!5 f 0F2AR2

cosu

r
1BR2

cosu

r
22CR4

cosu

r 3 G , (12)

s ru
~1!5 f 0FBR2

sinu

r
22CR4

sinu

r 3 G , (13)

suu
~1!5 f 0F6BR2

cosu

r
12CR4

cosu

r 3 G , (14)

2m1ur
~1!5

f 0R2

2
$@A~k111!1B~k121!# ln r cosu2~A1B!cosu

1@A~k121!1B~k111!#u sinu%1 f 0CR4
cosu

r 2 (15)

2m1uu
~1!5

f 0R2

2
$2@A~k111!1B~k121!# ln r sinu

2~A1B!sinu1@A~k121!1B~k111!#u cosu%

1 f 0CR4
sinu

r 2 (16)

Domain II:

s rr
~2!5 f 0~2D21!r cosu, (17)

suu
~2!5 f 0~6D21!r cosu, (18)

s ru
~2!52 f 0Dr sinu, (19)

2m2ur
~2!5 f 0FD~k222!2

k221

4 G r 2 cosu1 f 0a2C1 sinu

1 f 0a2C2 cosu, (20)

2m2uu
~2!5 f 0FD~k212!2

k221

4 G r 2 sinu1 f 0a2C1 cosu

2 f 0a2C2 sinu1C3r , (21)

Domain III:

s rr
~3!5 f 0F2Er cosu12FR2

cosu

r
1GR2

cosu

r
22HR4

cosu

r 3 G ,
(22)

s ru
~3!5 f 0F2Er sinu1GR2

sinu

r
22HR4

sinu

r 3 G , (23)

suu
~3!5 f 0F6Er cosu1GR2

cosu

r
12HR4

cosu

r 3 G , (24)

2m3ur
~3!5

f 0R2

2
$@F~k311!1G~k321!# ln r cosu

2~F1G!cosu1@F~k321!1G~k311!#u sinu%

1 f 0HR4
cosu

r 2 1 f 0E~k322!r 2 cosu1C4R2 sinu

1C5R2 cosu (25)
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2m3uu
~3!5

f 0R2

2
$2@F~k311!1G~k321!# ln r sinu

2~F1G!sinu1@F~k321!1G~k311!#u cosu%

1 f 0HR4
sinu

r 2 1 f 0E~k312!r 2 sinu1C4R2 cosu

2C5R2 sinu1C6Rr (26)

wherem i andk i ( i 51,2,3) are the shear modulus and plane el
tic constant for Domaini. The additional constantsCi ( i
51, . . . ,6) areresulted from the integration process and cor
spond to the magnitudes of rigid-body displacements.

4 Determination of Unknown Coefficients

4.1 Single-valued Condition. By considering the unique
ness of the physical stress and displacement components, the
tivalued terms involvingu cosu and u sinu in ~15!–~16! and
~25!–~26! must be identically zero. This leads to the followin
conditions:

@A~k121!1B~k111!#50 (27)

F~k321!1G~k311!50. (28)

4.2 Continuity Conditions. Considering the continuity of
normal stress onr 5R between Domains I and III, we substitut
~12! and ~22! into ~4!. This leads to

2A1B22C22E22F2G12H50. (29)

For the continuity of shear stress onr 5R, we substitute~13!
and ~23! into ~5! and obtain

B22C22E2G12H50. (30)

Subtracting~30! from ~29! yields

A5F. (31)

Similar consideration for the normal and shear tractions on
interface between Domains II and III~i.e., on r 5a! leads to the
following equations:

2D22E2
2F

r
2

G

r
1

2H

r2 2150 (32)

2D22E2
G

r
1

2H

r2 50 (33)

wherer5(a/R)2. Subtracting~33! from ~32! immediately yields

F52
r

2
. (34)

The continuity of radial displacement between Domains I a
III leads to

C450, (35)

z1A@~k111!ln R21#1z1B@~k121!ln R21#

12z1C22E~k322!2F@~k311!ln R21#

2G@~k321!ln R21#22H22C550 (36)

wherez15m3 /m1 . The continuity of tangential displacement b
tween Domains I and III leads to the following equations:

C450, C650, (37)

z1A@2~k111!ln R21#2z1B@~k121!ln R11#

12z1C22E~k312!1F@~k311!ln R11#

1G@~k321!ln R11#22H12C550. (38)
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Similarly, the continuity of radial displacement between D
mains II and III gives

C150, (39)

z2D~k222!2
1

4
z2~k221!1z2C22E~k322!

2
F

2r
@~k311!ln a21#2

G

2r
@~k321!ln a21#

2
C5

r
2

H

r2 50 (40)

where z25m3 /m2 . By considering the continuity of tangentia
displacement between Domains II and III yields the followin
equations:

C15C350, (41)

z2D~k212!2
1

4
z2~k221!2z2C22E~k312!

1
F

2r
@~k311!ln a11#1

G

2r
@~k321!ln a11#

1
C5

r
2

H

r2 50. (42)

Substitution of~34! into ~28! and~31!, then the result into~27!
gives

B5
r~k121!

2~k111!
. (43)

To eliminateC5 , we add~36! and ~38! to obtain

z1A1z1B22z1C12Ek32F2G12H50. (44)

Eliminating C2 andC5 from ~40! and ~42!, we have

2z2Dk22
1

2
z2~k221!22Ek31

F

r
1

G

r
2

2H

r2 50. (45)

So far, we have already determinedA, B, F, andG @see~28!,
~31!, ~34!, and~43!#. Then,C, D, E, andH can first be solved by
using~30!, ~33!, ~44!, and~45!. Then, they can be substituted int
the following equations, which are from subtraction of~36! from
~38! and ~40! from ~42!,

ln R$2z1@A~k111!1B~k121!#1F~k311!1G~k321!%

24E12C550, (46)

2rz2~2D2C2!24Er1 ln a@F~k311!1G~k321!#12C550,
(47)

to yield C2 andC5 . In summary, the following solutions for the
unknown constants are obtained:

A5F52
r

2
, B5

r~k121!

2~k111!
, G5

r~k321!

2~k311!
, (48)
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C5
r~12z12k31k1!

2~k111!~z11k3!
2

r2

4~z11k3!F2r~z121!~z2k22k3!1~z11k3!~z2k322z2k21z222!

r2~z121!~z2k22k3!2~z2k211!~z11k3! G (49)

D5
r~z121!

2~k311!~z11k3!
1

~k321!

4~k311!
2

r2

4~11k3! S z121

z11k3
2

1

r2D F2r~z121!~z2k22k3!1~z11k3!~z2k322z2k21z222!

r2~z121!~z2k22k3!2~z2k211!~z11k3! G (50)

E5
r2~z121!

4~k311!~z11k3! F2

r
2

2r~z121!~z2k22k3!1~z11k3!~z2k322z2k21z222!

r2~z121!~z2k22k3!2~z2k211!~z11k3! G (51)

H52
r2

4~11k3!F2r~z121!~z2k22k3!1~z11k3!~z2k322z2k21z222!

r2~z121!~z2k22k3!2~z2k211!~z11k3! G (52)
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C25 lnS R

a D k3

z2~k311!
2 ln R

k1z1

z2~11k1!

1
2~z121!@11r~z221!#1z2~k321!~k31z1!

2z2~k311!~k31z1!

12H ~z121!@11r~z221!#

rz2~k31z1!
2

1

r2J H (53)

C55r ln RS k3

k311
2

k1z1

k111D1
r~z121!

~k311!~k31z1!

12S z121

k31z1
DH. (54)

The final stress and displacement expressions can be obtaine
back substituting~48!–~54! into ~12!–~26!. Of particular interest
are the stresses in the elastic plane, which are given by

suu
~1!5 f 0RH L

r

j
1K

r

j3J cosu, (55)

s ru
~1!5 f 0RH L

r

j
2K

r

j3J sinu, (56)

s rr
~1!52 f 0RH I

r

j
1K

r

j3J cosu, (57)

wherej5r /R is the normalizedr-coordinate and

Table 1 The identifications made and the value of constant K
in „55…–„57… for the solutions of problems given in Fig. 2

Case Identifications K

I z250, k25k̄ 12z12k31k1

~k111!~z11k3!
2

r

~z11k3!

3H r~z121!1z11k3

r2~z121!1z11k3
J

II r51, z251, z15z, k25k3 11k122~z1k2!

2~k111!~z1k2!
III r50, z15z, z251, k25k3 11k12~z1k2!

~k111!~z1k2!
IV z51 in Case III,k25k1 0
V z15z250, k15k25k̄ 11k̄2k3~11r!

k3~k̄11!~11r!
VI z→` in Case II or III

2
1

~k111!

Note: k̄ equals 5/3 for plane stress and 1 for plane strain
408 Õ Vol. 68, MAY 2001
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L5
~k121!

2~k111!
, I 5

~k113!

2~k111!
, (58)

K5
~12z12k31k1!

~k111!~z11k3!
2

r

2~z11k3!

3F2r~z121!~z2k22k3!1~z11k3!~z2k322z2k21z222!

r2~z121!~z2k22k3!2~z2k211!~z11k3! G .
(59)

Before considering the stresses at the hole boundary, it is
structive to consider various special cases of the present solu
Table 1 tabulates the solutions for various problems shown in
2 which are special cases of the solution for the problem show
Fig. 1.

Of more practical importance is the tensile stress concentra
at the rivet hole in the infinite plane. By choosing appropria
stiffness and thickness of the reinforced material~i.e., Domain III
in Fig. 1!, it is hoped that the concentration of the tensile ho
stress can be alleviated~as we will show later that this is indee
the case!. Fatigue crack initiations can therefore be avoided or
least, deferred. Therefore, the stresses in Domain I onr 5R are
evaluated next.

5 Numerical Results and Discussion
As remarked earlier, our main objective is to investigate w

kind of reinforced material can be used to reduce the tensile h
stress concentration at the rivet hole boundary onr 5R. For illus-
trative purposes, only the plane-stress condition is considere
our numerical calculations given in Figs. 3–8. In addition, sin
the range of Poisson’s ratio is relatively small comparing to
range of stiffness, we have assumedn15n25n350.25 in all our
calculations.

For steel structures, both the connecting plates and the ri
are made of steel. Therefore, we have setz15z2 in the numerical
calculations given in Figs. 3–5. Figure 3 plots the normaliz
hoop stresssuu(pR/P) against the angular coordinatef defined
in Fig. 1 for various values ofz(5z15z2) with r50.25. For
z55.5 ~i.e., the reinforced material is about five times stiffer th
the plane and rivet!, the tensile stress drops to becoming neg
gible for all values off between2p/2 andp/2. A more refined
calculation yields an optimum value of 5.35 should be used
means that we can choose a reinforced material such that the
stress can be significantly reduced. However, whenz further in-
creases, tensile hoop stress develops again but at the opposit
of the hole~i.e., atf52p/2!. Thus, an optimum value of stiffnes
ratio must be selected. This result provides a new theoretical b
for designing an efficient reinforced hole. Figures 4 and 5 sh
that the normalized radial stresss rr (pR/P) and shear stress
s ru(pR/P) decreases slightly and increases with the increas
z, respectively. But, the increases in the magnitude of the norm
Transactions of the ASME
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Fig. 2 Six special cases of the problem showed in Fig. 1
r
l

l
In
ized shear stress is about 23 percent forz increasing from 2.5 to
5.5 which is considered insignificant comparing to the drastic d
in the hoop stress shown in Fig. 3.

As considered by Ho and Chau~@23,41#!, different materials
may also be used for the circular inclusion and the plane. Th

Fig. 3 The normalized hoop stress suu„pRÕP… against f on
rÄR for various stiffness ratio z1Äz2Äz under the plane stress
condition with n1Än2Än3Ä0.25, and rÄ0.25

Fig. 4 The normalized normal stress s rr „pRÕP… against f on
rÄR for various stiffness ratio z1Äz2Äz under the plane stress
condition with n1Än2Än3Ä0.25, and rÄ0.25
chanics
op

us,

z1 /z2 is allowed to vary in Fig. 6 forz152.5 andr50.25. In
particular, Fig. 6 plots the normalized hoop stresssuu(pR/P)
againstf for various values ofz1 /z2 . The hoop stress in genera
drops with the increase ofz1 /z2 , but the drop is relatively smal
comparing to the effect of reinforced material shown in Fig. 3.

Fig. 5 The normalized shear stress s r u„pRÕP… against f on
rÄR for various stiffness ratio z1Äz2Äz under the plane stress
condition with n1Än2Än3Ä0.25, and rÄ0.25

Fig. 6 The normalized hoop stress suu„pRÕP… against f on
rÄR for various z1 Õz2 with n1Än2Än3Ä0.25, rÄ0.25 and z1
Ä2.5
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addition, we have also plotted the radial and shear stresses v
z1 /z2 . The shapes of these curves are similar to those give
Figs. 4–5, and thus they will not be given here. We found that
radial stress is basically independent of the value ofz1 /z2 while
the normalized shear stress increases only slightly withz1 /z2 .

In addition to the choice of material for the ring, we can al
select the thickness of the ring~Domain III in Fig. 1!. Figure 7
plots the normalized hoop stress againstf for various values of
r5(a/R)2 on r 5R for z15z25z55.35 ~the optimum stiffness
ratio leading to the minimum hoop stress!. It appears that the
tensile hoop stress does not decrease monotonically withr; thus,
it is possible to find an optimum thickness of the ring to redu
the hoop stress. Again, although the details are not given here
found that on the hole boundary both the radial and shear stre
are relatively insensitive to the value ofr.

To further investigate the optimum thickness, Fig. 8 plots
maximum normalized hoop stresssuu(pR/P) againstAr for vari-
ous values ofz. For smallz ~sayz52.5, 3.5!, a thinner reinforced
ring always leads to a smaller hoop stress concentration. H
ever, for largerz ~sayz55.35, 8.4!, local minimums of the hoop
stress can be found for some optimum values ofAr ~or the opti-
mum thickness!. Therefore, this suggests another opportunity
further reduce the tensile hoop stress at the hole boundary
choosing an optimum thickness of the reinforced ring for a s
cific ring material~i.e., for a specific value ofz!.

6 Conclusion
We have derived analytically the stresses induced in an infi

elastic plane containing circular inclusion~or rivet! bonded per-

Fig. 7 The normalized hoop stress suu„pRÕP… against f on
rÄR for various r with n1Än2Än3Ä0.25, and z1Äz2Ä5.35

Fig. 8 The maximum normalized hoop stress suu„pRÕP…

against Ar on rÄR for various values of z with n1Än2Än3
Ä0.25
410 Õ Vol. 68, MAY 2001
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fectly to a reinforced hole in the plane. The inclusion is assum
being bonded perfectly to the elastic plane through a reinfor
ring. The circular inclusion, the reinforced ring and the plane c
be made of different materials. In contrast to most of the previ
studies, the rivet force is applied through a uniformly distribut
body force on the inclusion instead of assuming a point force
the center of the inclusion. For the stiffness ratio between
reinforced material and the plane equal to or larger than
~z>1!, the tensile hoop stress at the hole boundary increases
tially with z, achieves a minimum value~close to zero! at an
optimum value ofz, and increases again with further increase inz.
Whereas, both the shear and radial stresses are relatively ins
tive to the changing values ofz. Thus, the tensile hoop stress ca
be reduced to becoming negligible~very close to zero! if an ap-
propriate stiffness is assigned to the reinforced ring, which
stiffer than the plane. We also found that the tensile hoop stres
general decreases with the increase in stiffness of the inclusio
addition, for a fixed stiffness ratioz an optimum thickness of the
ring can be determined such that the magnitude of the tensile h
stress is further reduced. In short, we have illustrated that a
opportunity exists to reduce tensile hoop stress at the hole bo
ary of the elastic plane by choosing the appropriate material
the reinforcement and the appropriate thickness of the reinfor
ring.
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On Bridgman’s Stress Solution for
a Tensile Neck Applied to
Axisymmetrical Blunt Notched
Tension Bars
The displacement field at the minimum cross section of an axisymmetrical notched t
bar is analytically related to the notch root radius for large geometry changes of
notch profile. This relationship is used to complete Bridgman’s formula for the ten
load of a tensile necking in order to predict the entire load-minimum diameter curve o
axisymmetrical blunt notched bar under tension. A particular case is solved by a
element modeling to check the theoretical results derived at different stages o
analysis. @DOI: 10.1115/1.1360689#
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1 Introduction
The stress and strain distributions derived by Bridgman@1,2#

for the neck of a tensile round bar are found quite often in bo
and treatises on plasticity. This is largely due to the interest of
subject, but in part it is also due to the intrinsic value of t
analysis since few problems of plasticity can offer a solution
elegant as Bridgman’s. It should be noted that in spite of the
that the neck development is a nonlinear problem owing to
plastic behavior of the material and the large geometry chan
Bridgman arrived at simple formulas, analytically derived, for t
stress distribution across the minimum cross section. This di
bution is given as a function of the tensile load acting on the b
the neck diameter, and the radius of curvature of the neck pro
at its root.

Bridgman’s work on tensile necking has given rise to seve
contributions on the same subject. Soon after Bridgman, David
kov and Spiridonova@3# proposed a similar analysis with quant
tative differences in some of the assumptions. Subsequently,
plan@4# extended Bridgman’s analysis beyond the minimum cr
section and was able to predict the form of the neck profile fr
the same parameters as those of Bridgman. Jones, Gillis,
Shalaby@5# used the method of Kaplan to obtain a more compl
solution, and Eisenberg and Yen@6# generalized Bridgman’s
analysis for orthotropic bars with the longitudinal axis parallel
two planes of orthotropy.

Several interesting consequences can be drawn from Br
man’s results, those referring to the triaxiality of the stress stat
the neck being worthy of mention: His solution ascertains that
stress state is no longer uniaxial when the neck begins to form
shows that the triaxiality is maximum at the axis of the bar; an
predicts the corresponding value as a function of the main v
ables~the tensile load, the neck diameter, and the radius of c
vature of the neck!. Perhaps the idea of producing controlled t
axial stress states by means of artificial necks was suggeste
these conclusions, and hence that of assimilating a circumfere
notch machined on a cylindrical tension specimen to the ten
necking of a round bar, once general yielding has taken plac
the notched specimen.
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As a consequence, a considerable amount of investigation
ductile steels has been conducted using circumferentially notc
cylindrical tension specimens in conjunction with Bridgman’s fo
mulas, and research works have been reported relating the s
state to the fracture mechanisms~@7#!, determining experimentally
the influence of the stress triaxiality on the fracture strain~@8#!,
and predicting the upper shelf static fracture toughness~@9#!. In
recent years, testing with circumferentially notched cylindric
tension specimens has become the usual method of characte
the local approach theories. Often Bridgman’s solution is used
a reference in these tests~@10#!, although sometimes it is comple
mented with finite element calculations~@11,12#!.

Bridgman’s solution was derived for a necking with a give
profile, so it cannot be applied to notched specimens that h
experienced large geometry changes unless the shape of th
formed notch be known. This paper shows that the notch ge
etry changes suitable for the application of Bridgman’s formu
can be predicted from the first hypothesis assumed by Bridgm
According to this hypothesis, which is based on experimental e
dence ingeniously obtained, the axial strain rate is uniform at
minimum cross section of the necking. The prediction of the
ometry changes requires an equation previously derived in
paper which determines the notch root radius~the curvature radius
of the notch profile at the notch root! from the displacement field
of the minimum cross section. When this equation is particu
ized for the displacement field corresponding to a uniform ax
strain rate, a biunivocal relation results between the notch r
radius and the radius of the minimum cross section~minimum
radius!.

Once the notch root radius is given as a function of the m
mum radius, Bridgman’s formula for the load that produces
given necking can be applied to a notched specimen so tha
load sustained by the specimen becomes dependent on only
kinematical variable, the minimum radius. A second hypothe
assumed by Bridgman is involved in his formula and concerns
isostatic lines in the axial plane of the necking, which were a
proximated by circumferences in the neighborhood of the m
mum cross section. When Bridgman’s formula is employed in t
way, it transforms into a theoretical prediction of the loa
minimum radius curve of a notched specimen, whose maxim
the plastic instability load, becomes also a theoretical predicti

All these theoretical predictions are developed in the paper
are used for the assessment of Bridgman’s solution as an app
mation to describe the plastic behavior of tensile round specim
with circumferential blunt notches. The assessment is based o
comparison of the theoretical predictions with the numerical
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sults obtained in a finite element modeling of the tensile load
process of a circumferentially notched specimen.

2 Evolution of the Notch Root Radius
In a tensile round bar of isotropic and homogeneous mate

the necking development, and hence the deformation of a circ
ferential notch, consists of geometry changes maintaining
axial symmetry about the longitudinal axis of the bar, as well
the mirror symmetry to the plane of the minimum cross sect
area. No other condition is considered in the analysis, but
classical theory of plasticity~the Von Mises yield criterion with
isotropic hardening and the Prandtl-Reuss equations! is applied.
The theoretical basis of an equation for the evolution of the no
profile radius is the condition of the notch profile of being sim
taneously a traction-free contour and a material line. The la
means that it is formed by the same material points at all tim
which is a consequence of being the intersection of a mate
surface~the bar surface! with a plane~an axial plane! that the
material points can not leave, due to the axisymmetry.

The starting point is the kinematical equation derived in
Appendix for the time derivative of the curvature of the mater
lines of a continuous medium in motion. In this equation, the ti
rate k̇ of the curvature at a given point of a material line is e
pressed as a function of the strain rate tensor field, the velo
field, and the curvaturek and the torsiont of the material line at
the given point

k̇5
1

2

]ġ tn

]s
2

1

2
tġ tb1

1

2

]~curl v!

]s
•b2 «̇ tk. (1)

The amounts involved in Eq.~1! are the components«̇ t , ġ tn , and
ġ tb of the strain rate tensor~normal and shear strain rates! in the
tangent~t!, principal normal~n! and binormal~b! directions of the
line, the directional derivatives of these components in the tang
direction of the line (]/]s), and the curl of the velocity fieldv.
For a material lineG coplanar with the axis of revolution in a
axisymmetrical motion of the continuous medium~Fig. 1!, Eq. ~1!
can be simplified. First, since the material line remains plane
torsiont vanishes. Further, if the axis of revolution is chosen
thez-axis of a cylindrical coordinate systemr ,u,z and the princi-
pal normal is the tangent rotated 90 degrees counterclock
~Fig. 1!, the binormalb coincides with the negative of the un
base vectoreu . Finally, the axisymmetry of the velocity fieldv

Fig. 1 Axisymmetrical motion of a continuous medium: mate-
rial line coplanar with the axis
Journal of Applied Mechanics
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implies only radial and axial components independent ofu, v r ,
andvz , which leads to the following expression of curlv:

curlv52veu with v5
1

2 S ]v r

]z
2

]vz

]r D . (2)

By virtue of these particular conditions, the directional derivati
of curl v alongG may be put in the form

1

2

]~curl v!

]s
•b5

]~veu!

]s
•~2eu!52

]v

]s
52gradv•t (3)

and Eq.~1! becomes

k̇5
1

2

]ġ tn

]s
2gradv•t2 «̇ tk. (4)

Furthermore, the gradient ofv may be expressed as a function
the strain rate field by applying the formulas for this operator
cylindrical coordinates and then eliminating the derivatives of
velocity components through the expressions which relate
strain rates to the velocity field, also in cylindrical coordinate
Denoting the radial and axial unit vectors of the cylindrical coo
dinates byer andez , the result is

gradv5S ]«̇ r

]z
2

1

2

]ġ rz

]r Der1S 1

2

]ġ rz

]z
2

]«̇z

]r Dez . (5)

On applying Eq.~4! to the deformed notch profileG ~Fig. 2!, the
shear strain rateġ tn remains null alongG, and as a consequenc
its derivative in the tangent direction vanishes. This is due to
absence of shear stresses acting on the notch profile, which

Fig. 2 Deformed and undeformed notch profiles
MAY 2001, Vol. 68 Õ 413
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plies the absence of the corresponding shear strain rates acco
to the Prandtl-Reuss equations. Then for the notch profile Eq~4!
becomes

k̇52gradv•t2 «̇ tk. (6)

At the root of the notch~point A of Fig. 2!, where the value of the
curvaturek is denoted byc(c521/R) and its initial value by
c0(c0521/R0), the direction of the tangent toG coincides with
that of the axis of axisymmetry, so the vectort and the strain rate
«̇ t coincide with ez and «̇z , respectively. Then, substitution o
these particular conditions besides Eq.~5! into Eq. ~6! yields

ċ5
1

2

]ġ rz

]z
1

]«̇z

]r
2 «̇zc. (7)

A form of this equation involving still fewer variables can b
obtained. According to the axisymmetry, a principal direction
the strain rate tensor iseu , and the other two,eI and eII , are
contained in the axial plane. By applying the Mohr’s circle pr
cedure, the strain rateġ rz can be expressed as a function of t
strain rates«̇ I , «̇ II in the directionseI andeII and of the anglew
between the radial direction andeI , so that

ġ rz5~ «̇ I2 «̇ II !sin 2w (8)

]ġ rz

]z
5

]~ «̇ I2 «̇ II !

]z
sen 2w12~ «̇ I2 «̇ II !

]w

]z
cos 2w. (9)

Since at the root of the notch the axial and radial directions
principal directions of stress and strain rate, the conditions to
particularized in Eq.~4! for point A are

w5
p

2

]w

]z
5c «̇ I5 «̇z «̇ II5 «̇ r .

Thus, for the root of the notch, Eq.~9! and subsequently Eq.~7!
become

]ġ rz

]z
522~ «̇z2 «̇ r !c (10)

ċ52 «̇ rc1
]«̇z

]r
. (11)

An undeformed elemental lengthdr0 lying on ther-axis trans-
forms into dr after deformation and remains on ther-axis since
this axis moves along itself due to the axial and mirror symme
Let l be the value of the ratiodr/dr0 at point A. Hence, at this
point

«̇ r5
l̇

l

]«̇z

]r
5

1

l

]«̇z

]r 0
5

1

l S ]«z

]r 0
D • (12)

and Eq.~11! transforms into

ċ52
l̇

l
c1

1

l S ]«z

]r 0
D • (13)

which, after some rearrangement, can be integrated to yield

lc2
]«z

]r 0
5cte5c0 (14)

where the constant has been determined from the undefor
specimen, for which the curvature of the notch isc0 , l is equal to
unity and«z vanishes. In terms of the notch root radiusR and its
initial value R0 ~c521/R, c0521/R0 , Fig. 2!:

R0

R
5

1

l
2

R0

l

]«z

]r 0
(15)

If the elastic compressibility is neglected, incompressibility fo
lows, and for the points of ther-axis it takes the form
414 Õ Vol. 68, MAY 2001
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15e«z
r

r 0

dr

dr0
5e«z

r

r 0
L⇒«z52 lnS L

r

r 0
D (16)

whereL5L(r 0) is the radial stretch ratiodr/dr0 along this axis.
Then

]«z

]r 0
52

1

L

dL

dr0
2

1

r

dr

dr0
1

1

r 0
52

1

L

dL

dr0
2

L

r
1

1

r 0
(17)

and at point A

]«z

]r 0
52

l8

l
2

l

a
1

1

a0
, (18)

l8 being the value of the derivativedL/dr0 at this point, namely,
at r 05a0 . Thus, Eq.~15! becomes

R0

R
5

1

l
1

R0l8

l2 1
R0

a0
S a0

a
2

1

l D . (19)

Therefore, the notch root radiusR is determined by three value
dependent on the displacement field of the minimum cross sec
of the notch: the radiusa of the section and the valuesl andl8
taken at the notch root by the radial stretch ratio and its deriva
along ther-axis. Equation~19! is a kinematical relationship tha
allows the notch root radius to be found from the single funct
of the distance to the center of the cross section, to which
displacement field reduces.

3 Application to Bridgman’s Solution
The first specific hypothesis of Bridgman’s analysis determi

the displacement field at the minimum cross section of the ten
neck. Therefore, when Bridgman’s solution is applied to a ten
notched specimen, the result of particularizing Eq.~19! for this
displacement field is being assumed as valid for the specim
and it provides a means to check such application of Bridgma
solution.

According to experimental evidence, Bridgman assumed
axial strain rate«̇z to be uniform across the minimum cross se
tion, which leads to the uniformity of the overall strain rate a
strain states, including the standard equivalent plastic strain«̄p .
Indeed, if «̇z is not dependent onr, from the conditions of axi-
symmetry and incompressibility it follows that

«̇ r5 «̇u52
1

2
«̇z52

1

2
«G p5

ȧ

a
(20)

« r5«u52
1

2
«z52

1

2
«̄p5 ln

a

a0
(21)

r

r 0
5e«u5

a

a0
L~r 0!5

dr

dr0
5

a

a0
(22)

l5L~a0!5
a

a0
l85

dL

dr0
U

a0

50. (23)

Particularizing these values ofl andl8 in Eq. ~19!, it simplifies
to

R

R0
5

a

a0
, (24)

i.e., the notch root radius and the minimum specimen radius v
proportionally during the deformation process. This must be s
isfied by the tensile notched specimens for which Bridgman’s
lution is applicable.

The second specific hypothesis of Bridgman’s analysis was
sumed in the development of the formula that gives the ten
load as a function of the neck geometry and the stress-strain c
of the material. The development of the formula is next summ
rized as an introduction to the hypothesis.
Transactions of the ASME
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The stressess r , su , andsz are the principal ones at the min
mum cross section due to the axial and mirror symmetry,
accordingly ther-axis is an isostatic line of the planerz. These
conditions give rise to a particular equilibrium equation along
r-axis that can be obtained from the general equilibrium equa
along the isostatic lines of the axial planes for axisymmetry.
s I ands II be the principal stresses contained in the axial planesI
the distance along the isostatic line tangent tos I , RI the curvature
radius along the isostatic line tangent tos II , and w the angle
between the direction ofs I and ther-axis. The general equation i

]s I

]sI
2

s I2s II

RII
1

s I2uu

r
cosw50, (25)

and for ther-axis

ds r

dr
2

s r2sz

r
1

s r2su

r
50, (26)

r being the curvature radius of the isostatic lines normal to
r-axis at the points of intersection with it. Furthermore, the equ
ity of the stressess r andsu arises from that of the correspondin
strain rates, and as a consequence the differencesz2s r is the
equivalent stresss̄, which remains uniform in all the section du
to isotropic hardening~such a property implies a biunivocal rela
tion s̄5H( «̄p) between this stress and the equivalent plastic st
«̄p , so that if one of them is uniform so is the other!. Thus Eq.
~26! becomes

dsz

dr
1

s̄

r
50 with s̄5HS 2 ln

a0

a D (27)

and can be integrated with the boundary conditionsz5s̄ at r
5a ~sinces r50 at this point! to give

sz5s̄S 11E
r

a dr

r D . (28)

The tensile loadP sustained by the specimen is the resultant fo
of the axial stressessz acting on any cross section. Then,P can be
expressed as a function of the variables introduced up to now
integrating the value given by Eq.~28! over the minimum cross
section

P5E
0

a

sz2pxdx5E
0

a

s̄S 11Ea dr

r D2pxdx

5pa2s̄S 11
2

a2 E
0

aF1

r E0

r

xdxGdr D
5pa2s̄S 11

1

a2 E
0

a r 2

r
dr D

5pa2s̄S 11E
0

1 a

r S r

aD 2

dS r

aD D . (29)

The second hypothesis formulated by Bridgman states
variation of the curvature radiusr along the r-axis. Apart
from Bridgman, other researchers~@3,6#! have proposed or
suggested alternative hypotheses, but they all fall under the
eral formulation

r5a fS r

a
,
R

a D . (30)

As a consequence, the integral of the right-hand side of Eq.~29!
depends only on the ratioa/R, which according to relation Eq
~24! holds constant during the deformation; so that the expres
of the tensile load transforms into

P5pa2s̄FS a0

R0
D5pa2HS 2 ln

a0

a DFS a0

R0
D (31)
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FS a0

R0
D[11E

0

1 x2dx

f S x,
a0

R0
D . (32)

With the exception of the factorF(a0 /R0) ~henceforth, notch
factor! this relation between the tensile loadP and the radiusa is
that of an unnotched round bar of initial radiusa0 made from the
same material as the circumferentially notched round specim
Therefore, these two relations can be predicted one from ano
by dividing or multiplying the tensile load by the notch factor an
considering the radiusa as that of an unnotched bar or as that
the minimum cross section of a notched one. In particular,
maximum loads of these two tensile bars are the same excep
this factor, whereupon the load of plastic collapsePm of a circum-
ferentially notched round specimen should be given by

Pm5pa0
2RmFS a0

R0
D , (33)

Rm being the tensile strength of the material. Another import
consequence of Eq.~31! is the possibility of determining the
stress-strain curves̄5H( «̄p) by testing notched round specimen
and recording the tensile load as a functionP5P(a) of the radius
of the minimum cross section. The functionH(•) would be

H~x!5
P~a0e2x/2!

pa0
2e2xFS a0

R0
D (34)

and would be valid for a larger range of strain than that provid
by a standard tensile test, since the plastic instability of a notc
specimen would not mean the end of the test for the purpos
determining the stress-strain curve because it does not produ
geometrical configuration change as radical as the necking
smooth specimen.

Table 1 shows different functions giving the curvature radius
the isostatic lines along ther axis according to Eq 30, as well a
the corresponding notch factors as calculated from Eq. 32.

4 Finite Element Solution
As previously stated, Eqs.~24!, ~31!, and~33! provide support

to assess the validity of Bridgman’s solution for tensile blu
notched specimens by checking them with numerical or exp
mental results. The numerical results were preferred to the exp
mental ones due to the difficulties of performing the measu
ments involved in Eqs.~24! and ~31!, since there are no simple
methods to measure radii of curvature in a contour or ten
stress-strain curves beyond the tensile strength.

A large number of finite element solutions have been compu
for elastic-plastic circumferentially notched tensile round b
~@13,14#!. In general the results approach Bridgman’s solution
the sharpness of the notch profile decreases, but the reporte
tails do not allow Eq.~24! to be checked, so a finite elemen
solution was specifically obtained for this purpose. The length
the tensile bar numerically modeled, the radius of the gr

Table 1 Curvature radii and notch factors

Radiusr Notch FactorF(a0 /R0)

Bridgman aR

r
1

a2

2r
2

r

2 S11
2R0

a0
D ln S11

a0

2R0
D

Davidenkov
and
Spiridonova

r

R
11

a0

4R0

Eisenberg
and
Yen

aR

r
1

a2

r
2r

1

2
1S11

R0

2a0
D ln S11

a0

R0
D
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cross section and the radius of the notch profile were 9.82, 1
and 0.90 times the radiusa0 of the minimum cross section
An elastoplastic strain-hardening material obeying the isotro
Von Mises yield criterion and the Prandlt-Reuss constitut
equations was assumed. The mechanical properties of this m
rial, taken from an A533 vessel steel, are 200 GPa~Young’s
modulus!, 0.3 ~Poisson’ ratio!, 470 MPa~0.2 percent yield stress!,
and «̄p5(s̄/s0)8.5 with s05900 MPa~Ramberg-Osgood’s strain
hardening curve!. An axisymmetrical mesh of 431 nodes and 3
eight-node and six-node isoparametric elements, moderately
fined at the crack profile and at ther-axis ~with nine nodes on the
former and 14 on the latter!, was used for modeling a quarter o
the bar, as shown in Fig. 3. According to symmetry, the nodes
the r andz-axis were constrained to move along their respect
axis. Loading was simulated by imposing a single value of
displacement parallel to thez-axis on all the nodes on the base
the bar, this displacement being gradually increased until
maximum equivalent plastic strain in the bar roughly reache
value of 1, which occurred well beyond maximum load. The n
merical computation was made with a commercial finite elem
code allowing large geometry changes. The Ramberg-Osgo
curve was piecewise implemented in the code for a plastic st
range from 0 to 1.5.

Special attention was paid to the numerical results concer
with Eqs.~22! and ~24! in order to assess the accuracy of Brid
man’s solution complemented with Eq.~19! for axisymmetrical
notched bars. Figures 4, 5, and 6 are intended for this purpos
Fig. 4 the displacements of the nodes on ther-axis are plotted
in nondimensional and absolute values as a function of their in
position for a number of load levels covering elastic regim
contained yielding, general yielding, extended yielding, plas
instability ~maximum load!, and plastic unloading after plasti
instability.

Fig. 3 Notch profile and finite element mesh used for the nu-
merical solution
416 Õ Vol. 68, MAY 2001
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According to Eq. ~22!, with the logarithmic scales used i
Fig. 4, the points from a same load level should lie on para
straight lines of slope unity. As expected, in the elastic regim
the numerical displacements near the notch profile fail to foll
this trend. The deviation increases as plasticity extends over
notch sections and is maximum at general yielding, but it
creases as plastic instability approaches and continues decre

Fig. 4 Displacements of the r -axis nodes at different levels of
the maximum load Pm . „ER: elastic regime; CY: contained
yielding; GY: general yielding; PI: plastic instability …

Fig. 5 Deformed notch profiles at different load levels „Pm is
the maximum load …
Transactions of the ASME
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with plastic unloading until practically vanishing. With regard
Eq. ~24!, the notch profile in the neighborhood of the notch ro
has been plotted at different load levels in Fig. 5 from the d
placements of four nodes lying on it. The corresponding value
the notch root radiusR were determined as that of the circumfe
ence symmetric to ther-axis which passes through the node on t
notch root and the nearest on the notch profile.

The resultingR/R0 values are plotted in Fig. 6 as a function
the minimum area expressed by the ratioa/a0 . The exact solution
for incompressible material provided by Eq.~19! allows the de-
viation from Eq.~24! to be explained. For small strain, the hoo
and radial stretchesa/a0 and l hardly differ from unity, so Eq.
~19! predicts no significant difference between the radiiR andR0

unless a strain gradient giving rise to a value ofl8 not much
below 1/R0 be produced at the notch root. As the displaceme
plotted in Fig. 4 indicate, this requires a notch profile very mu
sharper than the finite element modeled one, so that the chan
curvature cannot precede that of the overall dimensions. S
large deformations initiate at the early stages of plastic instabi
Eq. ~24! is verified until then simply because there is no geome
change, even though the radial displacements do not satisfy
tirely Eq. ~22! ~Fig. 4!. When the large geometry changes
occur, the notch profile is deformed according to Eq.~22! as
shown in Fig. 6 by the points clustered around the straight
representing this equation. This is in agreement with the tren
the radial displacements to fulfill Eq.~22! as plastic unloading
increases~Fig. 4!. The maximum deviation from Eq.~24! takes
place just before plastic instability, when strains are already la
but the radial displacements still differ from Eq.~22! ~Fig. 4!.

Finally, the tensile load obtained by the finite element model
is plotted in Fig. 7 against the logarithmic strain 2 ln(a0 /a). Equa-
tion ~31! is also plotted in Fig. 7 with Bridgman’s notch factor o
Table 1. The unit load used in the plots isP05pa0

2s0 , namely,
the area of the minimum cross section multiplied by the str
constants0 of the strain hardening curve.

5 Discussion
The adequacy of Bridgman’s solution for axisymmetric

notched tensile bars will be discussed by comparing the fi
element solution of Section 4 with the main theoretical predictio
derived in Section 3, which give the notch root radius~Eq. ~24!!
and the tensile load~Eq. ~31!! as a function of the specimen min
mum diameter. The two results are a consequence of combi

Fig. 6 Notch root radius as a function of deformation
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Eq. ~19! with Bridgman’s solution, but whereas the first is bas
only on the linear displacement distribution assumed at the m
mum cross section of the bar, the second comes also from
curvatures assumed for the isostatic lines along ther-axis. So the
errors that the deviations from these two assumptions produc
the notch root radius~a local effect! and on the tensile load~a
global effect! will be assessed.

For large plastic deformation, the linear displacement distri
tion is a good approximation, as shown by the finite element c
culated displacement field~Fig. 4!. According to the absence o
deviations, in this regime no disagreement should be expe
between the theoretical prediction of the notch root radius gi
by Eq. ~24! and the finite element results; indeed no significa
disparity is detected, since the slight scatter of Fig. 6 is attrib
able to the numerical errors arising from the finite discretization
the bar. On the contrary, in the previous elastic and elastic-pla
regimes~roughly up to plastic instability! the displacements devi
ate from the linear distribution near the notch root~Fig. 4!. This
has no effect on the notch root radius for small strains, as alre
stated, and only at the transition to large deformation~the begin-
ning of plastic instability!, do the data in Fig. 6 indicate som
disagreement between the theoretical results and the nume
ones.

As far as the tensile load is concerned, Fig. 7 shows g
agreement between the values given by the finite element mo
ing and Eq.~31! in the range covering general and extended yie
ing up to plastic instability. The two results differ from maximu
load, i.e., when the notch root radius largely changes. The ten
load being affected, the discrepancy is a global effect and can
be due the displacement field at the minimum cross section, s
in this range these displacements deviate so little from the lin
distribution as to produce no local effect~Eq. ~24! is satisfied!. So,
it can only be attributed to the inaccuracy of the curvatu
adopted for the isostatic lines. The alternatives to Bridgman’s c
vatures given in Table 1 would not improve the agreement,
cause they would only modify the notch factor and would produ
a displacement of the curve in Fig. 7 parallel to the ordinate a
In fact, the curvatures derived by Bridgman seem to be an ex
lent solution of the type defined by Eq.~29!, since this can be
derived not only from the circumferences assumed by Bridgm
to be the family of isostatic lines to which the axisr belongs, but
also from other families of curves as ellipses or parabolas
plausible explanation of the inaccuracy arises when Eq.~24! is
substituted into Eq.~29! and it becomes apparent that the assum

Fig. 7 Tensile load as a function of deformation
MAY 2001, Vol. 68 Õ 417
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curvature distribution is the same through the deformation proc
but a scale factor. Therefore, as a consequence of Eq.~24!, the
root notch radiusR cannot account for the influence of the rat
a/a0 on the curvature distribution, so this dependence must
explicitly incorporated into Eq.~30!.

The failure of Eq.~31! to predict the tensile load beyond plast
instability does not allow an unbounded range of the stress-s
curve to be measured by applying Eq.~34! to tests carried out
with axisymmetrical blunt notched specimens. Nevertheless,
7 indicates that the tensile strength and even the yield stress m
be determined by this procedure. Indeed, reported tensile
covering a wide range of these properties and performed with
types of specimens provide experimental support for this poss
ity ~@15#!.

6 Concluding Remarks
A theoretical development was carried out aimed at derivin

relationship between the notch root radius of an axisymmetr
notched tensile bar and the displacement field at the minim
cross section for large geometry changes of the notch profile
for elastic-plastic incompressible material. Bridgman’s displa
ment and stress solution for a tensile neck was examined in c
bination with that relationship with regard to their application
axisymmetrical blunt notched bars under tension, and this allo
the entire load-minimum diameter curve of the bar to be p
dicted. A finite element solution of a particular case was co
puted for comparison, and different steps of the analytical de
opment were checked, the following conclusions being drawn
to the effects produced by the inaccuracy of Bridgman’s solut
for the notched bar on the predicted notch root radius and ten
load: no significant error of the former was observed over
entire range of plastic deformation~small and large!, but signifi-
cant differences were found in the latter after plastic instabilit
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Appendix
The aim of this section is to derive a kinematical equation

lating the curvature of a deformed material line to the veloc
field in a body which is being subjected to deformation. The eq
tion is obtained for the general case and particularized for tha
axisymmetry in Section 2 of the main text.

Let G be the curve which represents the deformed material
at present time. The position vector of a material point isr , v is
the velocity field,s is the distance alongG, k and t are the cur-
vature and the torsion ofG, and t, n, andb are the vectors of an
orthonormal basis in the tangent, principal normal, and binor
directions ofG ~Fig. 8!. All these quantities and their directiona
derivatives alongG are related by the Frenet equations:

]r

]s
5t (A1)

]t

]s
5kn (A2)

]n

]s
52kt1tb (A3)

]b

]s
52tn. (A4)

In order to introduce the velocity field, a rule is required
which the order of differentiation between the directional deriv
tive and the material time one~denoted by a superimposed do!
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can be exchanged. Letq be the vector amount to be differentiate
and «̇ t the normal strain rate in the direction tangent toG; given
thate« t is the ratiods/ds0 of the deformed and undeformed leng
of an elemental arc of the material line, such a rule would be

S ]q

]sD
•

5S 1

e« t

]q

]s0
D •5 1

e« t S ]q

]s0
D •2 «̇ t

e« t

]q

]s0

5
1

e« t

]q̇

]s0
2 «̇ t

]q

]s
5

]q̇

]s
2 «̇ t

]q

]s
. (A5)

Now, taking into account that any unit vector is normal to
derivatives, using the Frenet equations and applying Eq.~A5! to
the tangent vectort, the following expression for the time ratek̇
of the curvature is obtained:

k̇5n•~kn!•5n•S ]t

]sD
•

5n•S ] ṫ

]s
2 «̇ t

] ṫ

]s
D 5n•

] ṫ

]s
2 «̇ tk (A6)

A further development of this expression requires an expl
form to be found of the time derivative of the tangent vector. T
can be done by applying Eq.~A5! to the position vectorr , decom-
posing subsequently the velocity gradient into the sum of its sy
metric~the strain rate tensor«̇! and skew part~which is equivalent
to the vector product with 1/2 curlv as first factor!, and finally
introducing the shear strain ratesġ tn andġ tb for the tangent, prin-
cipal normal, and binormal directions. All this yields

ṫ5S ]r

]sD
•

5
] ṙ

]s
2 «̇ t

]r

]s
5

]v

]s
2 «̇ tt5~gradv!t2 «̇ tt

5«̇t1
1

2
~curl v!3t2 «̇ tt5

1

2
ġ tnn1

1

2
ġ tbb1

1

2
~curl v!3t.

(A7)

The differentiation of this expression and the subsequent us
the Frenet equations provide the directional derivative of the t
derivative of the tangent vector. Then, its projection onto the n
mal vectorn can be found and substituted into Eq A6, whic
finally gives:

k̇5
1

2

]ġ tn

]s
2

1

2
tġ tb1

1

2

]~curl v!

]s
•b2 «̇ tk. (A8)

Fig. 8 Vectors concerning the motion of a material line
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Cavitation and Mushrooming
in Attack of Thick Targets
by Deforming Rods
This paper analyzes the cavitation and mushrooming phenomena occurring in a
target during the high-speed penetration by a deforming rod. It is motivated by the
that two mechanisms are involved in the formation of cavity by a deforming rod. First
flow of the deformed rod products exerting radial stress on the target opens a c
(mushrooming). Second, the radial inertia of the target as it flows around the head
another part in the formation of the cavity (cavitation). By examining the dynamics o
flow of deformed rod products, the proposed model can estimate the extent of
growth due to the mushrooming effect. Predicted results for the final cavity growth
found to match well with the corresponding test values.@DOI: 10.1115/1.1360690#
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Introduction
Penetration mechanics involves the behavior of materials un

extreme loading conditions, such as plasticity, fracture, and
drodynamics. Among a variety of interests, there have been
eral previous attempts to explain the formation of cavity in a st
target that is penetrated by high-speed projectiles~@1,2#!. As
shown in Fig. 1, Hill @3# investigated the cavitation phenomen
produced by anondeformingprojectile traveling through an infi-
nite medium~any ductile metal! at constant velocity. If the cavity
radius isla, he provides the following equation:

l25
P

p
511

CdrU2

2p
(1)

where a is the radius of a rigid projectile,P is the resistance
pressure,p can be interpreted as the theoretical work per u
volume to make cylindrical or spherical holes~@4#!, r is the target
density,Cd is the drag coefficient depending on the headsha
andU is the penetration velocity. For a rigid body penetration,
impact velocityV is equal to the penetration velocity. Accordin
to Hill @3#, the dependence ofp on headshape is almost negligib
and it is evidenced by quasi-static experiments with long punc
For the static test where there is no cavitation, the resistance
is pA, whereA is the projected area of the projectile.

More pertinent to the present investigation is the analysis of
hypervelocity penetration, in which the projectile itself deform
This is usually applicable to military terminal ballistics. Walte
and Scott@5# formulated a theory of the cavity growth rate und
ballistic impact conditions. However, this model is applicable
thin plates and surface penetration/perforation where a p
stress condition is expected to exist. For a deforming rod in att
of thick targets at high speed, Miller@6# presented an engineerin
description of the deforming rod front and kinematics. Witho
the presence of material strengths, however, the model is not
to predict the final cavity growth.

Although one way to analyze a detailed penetration problem
to use computer predictions, this approach is computationally
pensive. By using an analytical model, significant parameters
how they vary over a wide velocity range can be obtained. Hen

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, Fe
16, 1999; final revision, Nov. 27, 2000. Associate Editor: K. T. Ramesh. Discus
on the paper should be addressed to the Editor, Professor Lewis T. Wheeler, D
ment of Mechanical Engineering, University of Houston, Houston, TX 77204-47
and will be accepted until four months after final publication of the paper itself in
ASME JOURNAL OF APPLIED MECHANICS.
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the purpose of this paper is to analyze the cavitation process
curring in a metal target during penetration by a deforming r
The analysis includes the centrifugal force exerted by the flow
deforming rod material, radial inertia of the target, and t
strength of the target. An axisymmetric coordinate system mov
at the constant penetration velocityU is used as reference, in
which the bottom of the contact surface is not moving. So
assumptions are made, many of which are motivated by the re
of experiments and numerical simulations.

Observations and Assumptions
It is worth noting that for hypervelocity penetration the fin

cavity diameter can be two to three times larger than the projec
diameter. This is due to the fact that two distinct mechanisms
involved in the radial motion of target material resulting fro
hypervelocity penetration. First, the deformed rod elements,
companied by a very high stress level in the target material, p
a dominant role in opening the cavity~mushrooming!. This is only
observed during hypervelocity penetration~@7#!. Second, the tar-
get inertia is responsible for further cavity formation until th
target strength forces it to come to rest~cavitation!. The term
‘‘cavitation’’ is borrowed from Hill’s work ~@3#! which deals with
the attack of thick targets by nondeforming projectiles, in whi
only the cavitation effect is investigated.

The theory must account for the previous two mechanis
Indeed, since the coupling contribution of the two effects, if an
could not be discerned from the available data, it is not clear h
to model the coupling effects of the two mechanisms. This di
culty can be eliminated by assuming that the total cavity growth
due to the sum of the cavity growth produced by each eff
acting independently, regardless of the order of application
loads. In other words, the principle of superposition is used for
total cavity growth. It is now necessary to evaluate the two effe
individually.
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92,
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Fig. 1 Cavitation in a thick target by a nondeforming projectile
01 by ASME Transactions of the ASME
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Mushrooming
The formation of cavity solely due to mushrooming can

derived from Miller’s analysis~@6#! with the presence of targe
strength. This is due to the fact that the target strength will ev
tually halt the cavity growth. The geometry of the mushroomi
process is shown in Fig. 2. The target is assumed to be s
infinite. Note that only half of the rod is displayed in the figur
The length is scaled by the radius of rod, such that the sc
radius of the rod is one. Now we focus on the dynamics of
flow of deforming rod elements during penetration. The flow
considered as incompressible, steady, and inviscid relative to
stagnation region~head!. The trace of the centerline of the de
forming rod elements allows us to determine the cavity grow
Since an axisymmetric coordinate system moving at the cons
penetration velocity~U! is used as reference, the speed of t
flowing material is always (V2U) regardless ofu and r. Hence,
this model is not valid for the entrance and end phases and is v
for the steady-state phase. We can also obtain a time-depen
model using a variable penetration velocity, if necessary.
shown in Fig. 2, we consider two contact regions between
head and target: a finite stagnation region~r ,r 1 , p/2<u<p!,
over which the resistant pressure equals the stagnation pre
1/2r tU

2, and the domain outside of the stagnation reg
~0<u<p/2!.

First, consider the case when the flowing rod element rem
outside of the stagnation region. From the rod mass conserva
in a coordinate system located at the head, the nondimens
thickness of a flowing rod element is given by

h~u!5
1

2r ~u!
. (2)

Note that the radius is nondimensional. The resistant pressure
file exerted by the target due to inertia is assumed to
1/2r tU

2 sin3 u as provided by Miller@6#, where u is the angle
between the tangent direction of the centerline of the rod flow
the axis of symmetry. Although the Newtonian pressu
1/2r tU

2 sin2 u allows a simple closed-form solution it overpre
dicts the pressure profile. The target resistance that is equ
pressure force plus target strength must balance the centrif
force generated by the flow of a deforming element,

Rt1
1

2
r tU

2 sin3 u5h~u!rp

~V2U !2

R~u!
, (3)

whereRt is the work expended per unit volume to open a sph
cal or cylindrical cavity, which can be interpreted asp in Eq. ~1!,
andR(u) is the scaled local radius of curvature of the centerl
curve. There are no axial stress gradients along the cente
since the speed of the flowing material is always (V2U) regard-
less ofu and r. From geometric relations,

R~u!52
1

sinu

dr

du
. (4)

Combining Eqs.~2!, ~3!, and ~4! gives the differential equation
describing the trajectory of a flowing element,

Fig. 2 Mushrooming and region of the target resistant
pressure
Journal of Applied Mechanics
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Rt1
1

2
r tU

2 sin3 u52
1

2r
rp~V2U !2 sinuS dr

du D 21

. (5)

The pressure on the left-hand side in Eq.~5! is assumed to ac
normal to the flow at radiusr, wherer is the radius of the center
line of a flowing rod element, although the resistance press
actually acts normal to the interface between the rod and tar
By introducing two constants,

K15
1/2rp~V2U !2

Rt
, K25

1/2r tU
2

Rt
, (6)

Eq. ~5! becomes

2rdr 52
2K1 sinu

11K2 sin3 u
du. (7)

To determine the trajectory of the flowing element as a function
u, this equation is to be integrated with an initial conditionr
5r 1 at u5p/2, which yields

r ~u!5Ar 1
22E

p/2

u 2K1 sinu

11K2 sin3 u
du. (8)

Since the deformed rod element starts to flow fromu5p/2 to 0,
the numerical integration of Eq.~8! for the domain of 0<u<p/2
allows us to determine the cavity growth (ac1) which is solely due
to the mushrooming. Note that if the inertia pressure had b
approximated to be 1/2r tU

2 sin2 u, there would be a simple
closed-form solution given by

ac15Ar 1
21

K1

AK21K2
2

ln@112K212AK21K2
2#. (9)

Second, consider the case when the flowing rod element rem
inside of the stagnation region. For this region, the location of
center of deformed rod material is expected to vary from half
the radius~u5p!, where the rod material is not initially deformed
to r 1(u5p/2). In order to find the initial conditionr 1 , by the
same reasoning with above, the pressure balance equation~Eq.
~3!! can be written for inside of the stagnation region,

Rt1
1

2
r tU

25h~u!rp

~V2U !2

R~u!
. (10)

Equation~10! implies that the actual resistance pressure, wh
does not have angle variations, is acting on the centerline of
rod elements. So, the stagnation pressure is always acting no
to the penetration direction. The existence of stagnation reg
will compensate the assumption that the resistant pressure i
sumed to act normal to the centerline. By using the radius
curvature and the thickness of the flowing element, Eq.~10! is to
be integrated fromr 50.5 atu5p to r 1 at u5p/2 resulting in

r 15A1

4
1

2K1

11K2
. (11)

At this point it is possible to calculate the cavity growth via E
~9!. However, the calculation requires the values ofRt andU. For
steady-state penetration of the stagnation head, the modified
noulli equation applies~@8–10#!

1

2
rp~V2U !21Yp5

1

2
r tU

21Rt . (12)

Yp is the pressure at which the rod begins to flow hydrodyna
cally. It is assumed that the projectile is rigid except for an infi
tesimally thin region near the target-projectile interface where e
sion is occurring. Then Tate@9# givesU,

U5
V2aAV212~12a2!~Rt2Yp!/r t

~12a2!
for aÞ1 (13)
MAY 2001, Vol. 68 Õ 421
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Fig. 3 The ratio of cavity growth due to mushrooming to the rod radius with
impact velocity, and the corresponding penetration velocity
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V

2
2

~Rt2Yp!

rV
for a51 (14)

wherea5Ar t /rp. For Yp,Rt , there is a critical velocity given
by @2(Rt2Yp)/rp#1/2 below which penetration no longer occur
The projectile will however continue to erode until it comes
rest. For Yp.Rt , there is a critical velocity given by@2(Yp

2Rt)/r t#
1/2 below which the projectile behaves as a rigid bo

~@11#!. The Rt value determined by the classical spherical cav
expansion model as presented by Satapathy and Bless@12# is used
in the present work.

In order to gain an insight into the influence of mushroomi
on formation of the cavity, the calculated values of the cavity s
for the penetration of a steel rod into a steel target and a tung
rod into a tungsten target are shown in Fig. 3. The remain
undetermined values, (Rt2Yp), used in the calculations are 2.6
GPa for the first case and 4.17 GPa for the second case~@13#!. The
corresponding penetration velocity for the impact of tungsten
into tungsten target is also shown in the figure. The critical imp
velocity below which the projectile can not penetrate is about 7
m/s. The penetration velocity then increases with increasing
pact velocity. Generally, it can be shown that the ratio of cav
radius to rod radius increases with impact velocity, however,
ratio is less than 2.5 even up to 4 km/s. As expected, it can
concluded that another mechanism should be taken into accou
explain the actual cavity measured in the experiments. This
be described in the next section.

Cavitation
We now turn to the cavitation stage in which the inertia im

parted to the target plays a role for further cavity expansion. T
inertia is created by flow in the target around a rod head movin
constant velocityU. To estimate the additional cavity formatio
due to the target inertia, we consider the target response t
‘‘equivalent rod’’—a rigid body of the same shape as the defor
ing rod head and moving at a constant penetration velocity~@3#!.
In other words, the eroding rod resembles a spherical nose
projectile. Actually, due to deceleration of a rigid body there is
steady state unless the body is self-propelled. However, ste
state, except during the initial and end phases of the penetra
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can be achieved for deforming projectiles. When a rigid projec
is moving through the ductile target, the force on projectile~work
per unit length! is put in the Poncelet form,

F

~pac1
2!

5Rt1
1

2
Cdr tU

2. (15)

It is explicit in the right-hand side of Eq.~15! that the first term
is static given by cavity expansion, and the second term is
drag force that comes about due to the convective inertia eff
~@14#!. Since the cavity grows fromac1 to a final sizeac due to the
inertia effect, the energy~per unit length! balance equation be
comes

1

2
~pac1

2!Cdr tU
25p~ac

22ac1
2!Rt . (16)

The simple energy balance equation implies that the inertia
utilized to open a cavity fromac1 to ac against the resistant pres
sureRt . The solution to the final cavity size is then given by

l5
ac

ac1
5A11

1/2Cdr tU
2

Rt
. (17)

When the drag coefficient is assumed to be 0.5~for a hemispheri-
cal nose!, this equation coincides with Eq.~1! but with ac1 replac-
ing projectile radius. This is due to the fact that there is no mu
rooming for a rigid-body penetration. Again the current study
mainly focused on deforming projectiles, in which the modifi
Bernoulli equation holds~@8–10#!.

As an illustration, Fig. 4 shows the variation of (ac1 /ac)
2 with

impact velocity. For example, (ac1 /ac) at an impact velocity of
2.7 km/s is about 0.7. This means that 70 percent of the ca
radius growth is due to mushrooming. This ratio at an imp
velocity of 1.5 km/s is about 0.9~tungsten rod into tungsten targe
case!. In this case, 90 percent of the cavity radius growth is due
mushrooming. Hence, the extent of the cavity ‘‘overshoot’’ due
target inertia increases with impact velocity since theU2 term in
Eq. ~17! becomes more important in the high impact veloc
limit.
Transactions of the ASME



t

l

i
5

v

(

e

n

o

the
alu-

y
ted
a. It
der-
ons
the

a

Comparison of Theory and Experiments
A cavity growth model has been derived considering both

mushrooming and cavitation effects. Since the accuracy of
current model relies on the validity of the assumptions as wel
the accuracy of the selected values of the parameters, it is te
with the experimental data. Comparison between the predict
and the corresponding experimental data are made in Figs.
Figure 5 compares Hohler and Stilp’s data~@15#! to the current
model for the impact of steel rods into steel targets. The ca
diameter was measured at the mid depth of the cavity. It can
concluded that by including the cavitation effect, the predictio
compare well to the experimental data at high velocities as w

Even for the case of penetration of tungsten rodsrp

517400 kg/m3) into tungsten targets~@15#!, as shown in Fig. 6,
the agreement is quite good. A further comparison for the cas
aluminum alloy projectiles (rp52800 kg/m3) into lead targets
~@13#!, which produces quite a large crater size, is also show
Fig. 7. As shown in the figure, most of the cavity production
due to the cavitation effect in this case. The analytical predicti

Fig. 4 Square of the ratio of cavity growth due to mushroom-
ing to final growth with impact velocity

Fig. 5 Ratio of cavity radius to rod radius with impact velocity,
experimental data for steel rod striking into steel target pro-
vided by Hohler and Stilp †15‡
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compare well with the experimental data. Table 1 summarizes
material data used in the analysis. The material data for the
minum alloy and lead are obtained from Refs.@8,16#.

Conclusions
An analytical model for cavity formation in a ductile target b

hypervelocity penetration of a deforming long rod is presen
and the predictions are compared with the experimental dat
has been demonstrated for deforming projectiles that by consi
ing both the mushrooming and cavitation effects the predicti
compare well with the experimental data. An estimate of
amount of mushrooming with respect to the impact velocity is

Fig. 6 Ratio of cavity radius to rod radius with impact velocity,
experimental data for tungsten rod striking into tungsten target
provided by Hohler and Stilp †15‡

Fig. 7 Ratio of cavity radius to rod radius with impact velocity,
experimental data for aluminum alloy rod striking into lead tar-
get provided by Tate †9‡

Table 1 Material parameters used in the analysis

Projectile→Target Yp ~GPa! (Rt2Yp) ~GPa!
Steel→Steel 1.6 2.65

Tungsten→Tungsten 2 4.17
Aluminum Alloy→Lead 0.8 20.55
MAY 2001, Vol. 68 Õ 423
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valuable contribution of the current analysis. The model is a
found to be accurate for rod projectiles for many different mate
systems. For a deforming projectile at high impact velocity, so
of the kinetic energy is absorbed by the enhanced expansion
hole otherwise it goes towards penetration. The application of
current cavity formation model to a nonhomogeneous rod, suc
jacketed rods, has been investigated~@17#!.
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Hysteretic Behavior of a Bar
Under Repeated Axial Loading:
An Extended History
Analytical study is made of an elastic-perfectly plastic bar under repeated axial load
A previous formulation on a pin-ended bar is extended here to include the effects o
eccentricity and rotational constraint at the bar ends. Basic equations are derived, b
on the assumptions of planar and small deflection, and of symmetry with respect
bar center. The end spring is allowed to yield. Numerical examples are present
demonstrate the application of the basic equations, and adequacy is shown for any
fied history of axial displacement. Diagrammatical representation of state variation
vides a better understanding of the hysteretic behavior as well as the applicability o
basic equations.@DOI: 10.1115/1.1360691#
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Introduction
Axially loaded members play an important role in such stru

tures as trusses or braced frames. Clarification of the perform
of these structures requires knowledge of the load-deforma
characteristics of the members. Plastic action in axially loa
members ordinarily takes precedence over flexurally loaded m
bers because of the predominance in stiffness of the former
the latter. Structural members are often subjected to variable
peated loading; load due to winds, earthquakes, cranes, tran
tation vehicles, and some machine parts are applied repeated
nature, and they may act in different or opposite directions.
axially resistant member in such a condition may buckle un
compression, deform plastically, but may partially recover in
subsequent tension. It may undergo plastic elongation and
result become loosened, reducing the overall stiffness of the s
ture.

Because of the lack of knowledge on the hysteretic behavio
axially loaded structural members, a series of investigations
begun a few decades ago to determine the load-deformation
tionship of a steel bar. Aside from computational or experimen
studies, previous analyses have provided the derivation of b
equations in a closed form~@1–7#!. On the basis of a one
dimensional idealization and of elastic-perfectly plastic behav
of its element, the basic equations are adequate to formulate
load-deformation characteristics of a simply supported prism
bar for any specified history of axial loading. It was assumed t
an effective length could be found such that the bar had inflect
or was free to rotate at both ends of the length under the actio
the centroidal axial forces.

While the results are of great value when these conditions
met with sufficient accuracy, there are cases where great ec
tricity is brought about by the connection and cases where
effective length cannot be approximated as constant or is diffi
to estimate. An example is a braced frame in which braces m
have eccentricity, or bracing and neighboring members are
comparable flexibility. End supporting gusset plates deform e
tically or may yield due to the rotation of the ends of the brace
braces may have initial deflections. Although a study of po

1Formerly at Kyoto University.
Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF

MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, Ju
24, 1999; final revision, Nov. 28, 2000. Associate Editor: R. C. Benson. Discus
on the paper should be addressed to the Editor, Professor Lewis T. Wheeler, D
ment of Mechanical Engineering, University of Houston, Houston, TX 77204-47
and will be accepted until four months after final publication of the paper itself in
ASME JOURNAL OF APPLIED MECHANICS.
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buckling behavior of steel braces in frames shows that an ela
cally restrained brace can be treated as a pin-ended strut of
length ~@8#!, this is uncertain for repeated loading~@9#!. Thus, an
attempt has been made in the present paper to develop an
tended theory that allows for externally applied end moments
well as load eccentricity on a bar.

Two papers have come to the authors’ attention, dealing w
the effects of end restraints on the hysteretic behavior of s
braces~@8,10#!. Prathuangsit et al. have assumed elastic-perfe
plastic bending, and made use of the notion of a yield hinge~@8#!.
They take into account that axial force reduces the fully plas
moment but not that plastic axial deformation takes place a
yield hinge in addition to bending or rotation. While the latter fa
is well understood from the plastic flow or normality rule und
combined action of bending moments and axial forces, this is
recognized either in earlier papers of their group~@11,12#!. It may
be worthwhile to point out that an account of the plastic ax
deformation at yield hinges in a kinematical approach leads t
reduction in the plastic collapse load of a frame~@13#!; this is the
same as the effect caused by the reduction of fully plastic m
ments due to the existence of axial force in a statical approach
the papers cited above~@1–7#!, the plastic axial deformation ha
been shown to play an important role in the hysteretic behavio
an axially loaded bar of moderate length. Mitani has modifi
Nonaka’s formulation to analyze eccentrically loaded bars w
elastic restraints against rotation at the bar ends~@10#!. With re-
course to step-by-step integration, he has considered some
merical examples of steel bars of rectangular and wide-fla
cross sections.

The present paper is concerned with a more general formula
to allow for nonlinear rotational restraint as well as load ecc
tricity by extending the previously established basic equatio
Emphasis is placed on closed-form formulation, even with
drawback of drastic assumptions.

Assumptions
Supposing an initially straight bar of lengthL in equilibrium

with a slowly varying eccentric axial load, analysis is made on
basis of simplifying assumptions, in the same line as before
cept for supporting conditions. They are summarized by the
lowing items:

1 A uniform cross section is assumed, with dimensions su
ciently small in comparison withL that the bar may well be

e
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part-

92,
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treated as a one-dimensional continuum, but the slenderne
moderate so that the strength in compression is of the same o
of magnitude as that in tension.

2 The cross section is assumed to be of such symmetry tha
bar deforms only in a definite plane without torsion.

3 Plane cross sections are assumed to remain plane wit
shear deformation. Elemental behavior is assumed to be ela
perfectly plastic under combined action of axial force and bend
moment, and the yield condition is such that the bending mom
is a function of the axial force.

4 The load is composed of a pair of equal and opposite for
with intensityN applied at the ends in the direction parallel to t
original axis of the bar with eccentricityD in the plane of defor-
mation. The loadN is taken positive when tensile and negati
when compressive. An assumption is made of symmetry with
spect to the center of the bar so that the two halves behave i
identical manner.

5 Constraint from neighboring members at the connection
represented by spiral springs as shown in Fig. 1.~The deflection
curve in this figure represents a generic state with previous h
ing action.! It is assumed that the resisting moment is a piecew
linear or polylinear function of the angle of end rotation; th
includes the elastic-perfectly plastic spring as a special case.

6 Two assumptions of small deformation are made: Chang
length is negligibly small as compared with the original length
the bar; deflection is small enough so that the square of the s
in the deflection curve is negligible in comparison with unity.~See
the Appendix for discussion on this point.!

7 Material ductility and absence of local instability are a
sumed.

Assumption 1 excludes extremely stubby and slender bar
cross-sectional dimensions are of the same order of magnitud
the bar length as in the former case, shear effect may bec
important; on the other hand, if the bar is so slender that its c
pressive strength is negligibly small as compared with the ten
it may well be treated as a tension-carrying member like a st
or cable. The Assumptions of 2 and 7 are rather stringent. T
walled cross sections tend to be distorted and/or lose local st
ity, when subjected to significant plastic straining during repea
loading ~@14,15#!. Nevertheless, past experimental studies h
shown a reasonable agreement with the basic formulation of
present theory under limited cycles of loading for negligible e
centricity and end restraint~@16#!.

The displacementD of an end takes place relative to the oth
end along the original bar axis;D is taken positive for end sepa
ration so that the distance between the ends amounts toL1D.
The x-y coordinates are taken to indicate the deflection cu
y(x) with the origin at an end. Positive direction ofy is taken
opposite to the load eccentricityD ~Fig. 1!. Young’s modulus is
denoted byE, cross-sectional area byA, moment of inertia byI,
limit moment in pure bending byMo , and limit load in pure
tension byNo .

Derivation of Basic Equations
It is convenient to treat the loadN as the independent variabl

and to determine the deformations as its functions with due
count of the nonuniqueness and history-dependence of their
tions. The relative displacementD is caused by change in th

Fig. 1 Problem under consideration
426 Õ Vol. 68, MAY 2001
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length of the bar due to elastic and plastic deformations, and
change in geometry accompanied by lateral deflection~See the
Appendix for the separability of components.! The relative dis-
placement is nondimensionalized by the elastic limit displa
ment. It follows that

d5
EAD

NoL
5de1dp1d t1dg. (1)

On the basis of Assumption 6, the axial force is approximated
constant along the bar axis, and equal toN. The componentde due
to elastic deformation equals the dimensionless loadn[N/No .
Plastic pure elongation induces the componentd t and plastic de-
formation at yield hinges induces the componentdp. These plastic
components as well as the componentdg due to geometry change
depend on the deflected configuration. It turns out through
amples of analytical behavior that in an initially straight bar yie
hinges appear at the center or the ends or both, so that half o
deflection curve is determined from the elastic equilibrium eq
tion which, on the basis of Assumption 6, reads

d2h

dj22n2h5e for 0,j,1 (2)

where

j5
2x

L
, h5

4EIy

MoL2 , n5ANL2

4EI
(3)

ande is the ratio of the end moment toMo . The combined action
of the loadN with eccentricityD and the resistant momentMor at
the end is replaced, based on Assumption 3, by a statically equ
lent system of the centroidal axial loadN and end momentMoe
5Mor 1ND. Positive directions of the dimensionless quantiti
are indicated in Fig. 2. Because of symmetry, only the left half
the dimensionless deflection curve is shown. Letf denote the
angle of rotation at the end yield-hinge, and letc denote the slope
angle at the point just to the right of the end hinge. Assumptio
permits the dimensionless resistant momentr to be linearly related
to the angle of end rotationc2f, so that

r 5ke~c2f!1kp (4)

where ke and kp are piecewise constant factors and are to
evaluated in each range of linearity. If the spiral spring is plas
these factors depend on the history of loading in the contex
yielding in plastic theory, taking distinct values for loading an
unloading processes. For perfectly plastic action with limit m
mentM p , for example,ke50 andkp56M p /Mo .

Equation~2! is integrated with end conditionsh50 at j50
anddh/dj→c asj→0, to give

h5c
sinh~nj!

n
1e

cosh~nj!21

n2 (5)

Note that n is treated as known and,c and e are determined
below, by noting that bending moments are known at acting yi
hinges and that the corresponding rotations are predetermine
elastic processes. When the bending momentMoc at the center

Fig. 2 Dimensionless positive quantities
Transactions of the ASME
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reaches a value such that together with the axial force, it satis
the yield condition, plastic action takes place with a yield hinge
the center~see Fig. 2 for positive direction ofc!. In this plastic
processc is expressed as a function ofn on the basis of Assump
tion 3, and the boundary condition at the centerd2h/dc2→2c as
j→1 reads

c n sinhn1e coshn52c. (6)

Let 2u be the angle of hinge rotation andu is the slope angle at the
point just to the left of the center in the dimensionless deflect
curve. The hinge rotation during this process is determined fr
the condition thatdh /df→u asj→1, which becomes

c coshn1e
sinhn

n
5u. (7)

Equation~7! also serves as the boundary condition at the ce
for elastic action, in whichu is known from the preceding plasti
straining and remains constant under varying load.

Similarly, when plastic action takes place at the end,e is given
from the yield condition, andc can be found directly either from
Eq. ~6! or from Eq.~7!, depending upon central plastic or elas
action, respectively, in terms of known quantities. During th
process the angle of rotationf at the end hinge is determine
from the end condition

e5ke~c2f!1kp1nd (8)

whered[NoD/Mo . For elastic action at the end, i.e., when t
end hinge is inactive, the boundary condition is given by Eq.~8!,
in which f is known from the preceding plastic straining; Eq.~8!
is combined with Eq.~6! for plastic action at the center to provid

c5
@kef2~kp1nd!#coshn2c

n sinhn1ke coshn
(9)

e5
~ke1nd!n sinhn2ke~c1fn sinhn!

n sinhn1ke coshn
(10)

and combined with Eq.~7! for elastic action at the center to pro
vide

c5

u1kef
sinhn

n
2~kp1nd!

sinhn

n

coshn1ke

sinhn

n

(11)

e5
keu1~kp1nd2kef!coshn

coshn1ke

sinhn

n

. (12)

With the deflection curve of Eq.~5! thus determined,dg is
evaluated by noting that the total difference in length between
arc and chord of the entire deflection curve is twice the integra
of A(dx)21(dy)22dx'(dy/dx)2dx/2 from x50 to x5L/2 on
the basis of Assumption 6. Thus,

dg52
A

8ENo
S MoL

I D 2E
0

1S dh

dj D 2

dj

(13)

52
a

4n F ~n2c22e2!1~n2c21e2!
sinh~2n!

2n

1ce$cosh~2n!21%G
wherea[(A/I )(Mo /No)2 is a dimensionless parameter depen
ing only on the cross section shape.

In the presence of axial force, plastic action at yield hing
causes not only hinge rotation or relative rotation across a h
but also plastic axial deformation or relative displacement, wh
Journal of Applied Mechanics
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is responsible for the componentdp. Suppose that the end yield
hinge is activated with the coordinates~e, n! of the dimensionless
stress resultant changing to (e1de,n1dn) by satisfying the yield
condition. The value ofdp changes accordingly by an amou
proportional to the incrementdf in hinge rotation occurring dur-
ing this process. The flow or normality rule of the theory of pla
ticity stipulates that the factor of proportionality depends on
stress state and equals2(a/2)(de/dn), which is a function ofn
according to Assumption 3. Similarly, the incrementdu of the
central yield hinge induces an increment indp during the change
from ~c, n! to (c1dc,n1dn) at yield. By noting the same con
tribution from the other half of the bar, it is seen that

ddp52a@e8~n!df1c8~n!du# (14)

where the primes indicate differentiation with respect to the ar
ment n. Thusdp is given by integrating Eq.~14! for the ranges
where f, and/or u varies, i.e., for each plastic process. If, fo
example, plastic action takes place only at the bar center wiu
varying from uc to u for n varying from nc to n, integration by
parts leads to

dp52aE
uc

u

c8~n!du1dc
p

(15)

5aFucc8~nc!2uc8~n!1E
nc

n

uc9~n!dnG1dc
p

wheredc
p is an integral constant during this process and is de

mined from previous plastic processes starting from zero at
virgin state. In the same manner,

dp52aE
fe

f

e8~n!df1de
p

(16)

5aFfee8~ne!2fe8~n!1E
ne

n

fe9~n!dnG1de
p

if plastic action takes place only at the bar ends withf varying
from fe to f for n varying fromne to n, wherede

p is an integral
constant. Plastic action can take place both at the center and
simultaneously. Both the components then add up to producedp

with a properly predetermined integral constant.
It is to be noted that the present formulation allows for so

variables to take both signs. WhenN is negative,n becomes
imaginary and certain equations involve complex functions. B
cause the variables introduced in this paper are of physical m
ing for negative load, these equations can be expressed in term
real numbers and functions. In fact, this is accomplished by
placing coshn by cosunu and sinhn/n by sinunu/unu; n50 is an iso-
lated removable singularity, and hence continuity is assured
supplementing the values of the variables in the limitn→0 as the
values forn50. This was discussed and confirmed in an ear
paper~@4#!.

Plastic elongation causes a changedd t>0 in d t>0, without
interaction with bending in a perfectly straight configuration. Th
is possible in the case ofd50, with n51. This can take place also
for dÞ0 whene50 andc50, in which case the bar become
straight with end kinkfÞ0, after undergoing plastic distortion. I
may also be possible for the bar to remain straight under the y
load in pure compression. However, the bar will most like
buckle before undergoing appreciable plastic contraction exc
for extremely short or stubby bars, which are not considered
this paper. The buckling or bifurcation load is found by regardi
centroidal compression as eccentric compression in the limi
case of small eccentricity, to be the smaller of the elastic buck
load and the yield load in pure compression. The elastic buck
load is determined from the condition for a nonzero deflection
occur with d5u5f5kp50, to beNe[4EIne

2/L2, wherene is
the solution of
MAY 2001, Vol. 68 Õ 427
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ne1ke tanhne50 (17)

dependent upon the spring constantke .
Another deformation parameter of importance is the maxim

deflection. The dimensionless central deflectionv is found from
rotational equilibrium of the half bar in Fig. 2, to be

v52
c1e

n
(18)

The aforederived basic equations are adequate to determin
hysteretic behavior of a restrained bar under any specified his
of axial loading with fixed end eccentricity. It is to be note
however, that load specification does not guarantee a unique
termination of the corresponding deformation. Under existenc
plasticity, loading and unloading processes bring about enti
different subsequent behavior; it is necessary to identify wh
path to follow at a bifurcation or fork. In contrast, specifyin
history of axial displacement determines the history of the lo
and hysteretic behavior.

Examples
Two examples are presented of the application of the b

equations for a specified history of axial displacement to sh
characteristic features of hysteretic behavior. The spiral sprin
assumed to have an elastic-perfectly plastic moment-rotation
tionship with elastic spring constant 2EIk/L and yield moment
mpMo . Among components ofd in Eq. ~1!, de equals the inde-
pendent variablen, dg is given from Eq.~13! and dp from Eq.
~15!, or ~16!, or from both Eqs.~15! and~16!. Therefore, unlessd
increases under constant loadNo, d is given from variablesu, f,
c, c ande, which are to be determined below.

Example 1. Consider repetitions with a fixed dimensionle
displacement amplitudedA55 in both sides. Letk50.45, mp
50.5, Ne /No50.8. Let eccentricity be absent, andd50 so that
r 5e. With weak-axis bending of a wide-flange cross section
mind, a piecewise-linear yield condition is assumed such that

ucu51 ~ unu<0.5!

1

2
ucu1unu51 ~ unu>0.5! (19)
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corresponding to a hexagonal yield curve, when expresse
terms of the central moment~see Fig. 3~b!!. This approximation
simplifies integration as in Eqs.~15! and ~16!, since the second
derivative of moments with respect to the axial force is zero
plastic processes.

Numerical results are illustrated in Fig. 3 witha50.6. For the
abscissas of~a! to ~g!, quantitiesd, c, e, u, f, c, andv are taken,
respectively, as against the common ordinate of the dimension
loadn. Figure 3~h! shows the moment-rotation relationship for th
end spring. Figure 4 is a sketch of deflection curves, in whic
solid circle indicates a yield hinge, and a cross indicates yield
of the end spring. The encircled numerals, which are consis
through Figs. 3 and 4, indicate the hysteretic series in order.
same numerals are used in the subscripts of variables for co
sponding states. The dotted lines in Figs. 3~b! and~c! indicate the
yield curve. The dotted-and-dashed lines are drawn in Fig. 3~c! for
yielding of end spring, i.e.,

e56mp . (20)

Loading is initiated with tension. Linearly elastic response up
a is described by the relationd5de5n. The processa→b is
plastic elongation with increasingd t. Displacement specification
gives

d 2
t 2d 1

t 5d 2
t 5d22d15dA21. (21)

Unloading fromb is associated with elastic contraction, until th
bar buckles atn52Ne /No at c. Lateral deflection increase
elastically as seen in Fig. 3~g!, until plastic action takes place a
d, when the state of stress at the bar center reaches the yield
as in Fig. 3~b!. The load variation inc→d is small for bars of
moderate slenderness~@4#!, and neglected in the present formul
tion. Deflection is expressed in terms of end slopec, which is
determined later. Withu50, Eqs.~7! and ~17! are combined to
give

e5kec. (22)

Equation~6! gives

c52
kec

cosne
(23)
Fig. 3 Behavioral diagram of Example 1
Transactions of the ASME
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and Eq.~13! gives

dg52
a

4n
c2 ne

cos~2ne!~cosne sinne2ne!

sinne
. (24)

It is only dg among the components ofd that varies in the proces
c→d. Specified values ofd, therefore, determinec with re-
course to Eq.~24!, and hence determinese andc on the basis of
Eqs.~22! and~23!, respectively. The buckling load depends on t
stiffness of the spring. The particular case of a pinned end
expressed byke50, and leads toe50, c5pc/2. End fixty ke
5` leads toe5c with cosne521. For intermediate stiffness
21,cosne,0, andc.e.0. The process betweenb and d is
reversible.

Plastic action takes place at the bar center in the procesd
→e. The yield condition determinesc in terms ofn. The stress
trajectory follows the yield curve as shown in Fig. 3~b!. With f
50, kp50 andke5k, Eq. ~9! givesc, Eq. ~10! givese, and Eq.
~7! givesu in succession. Withu450, Eq.~15! gives the compo-
nent

dp5aF E
n4

n

uc9~n!dn2uc8~n!G (25)

in which the integrand vanishes. Plastic action occurs not onl
the center but also at the end spring frome. The processe
→f is followed similarly with relationske50 andkp5mp .

Fig. 4 Deflection curves for Example 1
Journal of Applied Mechanics
e
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,
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The reversed displacement for the processf→g is realized
by elastic recovery withu5u6 , f5f550 andke5k. The end
spring undergoes residual rotation. Equation~8! is solved forkp
by noting that plastic rotation terminates atf to give

kp5mp2k~c62f5!. (26)

Equation ~11! determinesc, and Eq.~12! e. Equation~6! then
determinesc.

The central yield hinge is again activated atg. The process
g→h is analyzed in a manner similar to the processd→e in
distinction with a tension as against a compression in the la
process. Additional plastic action starts at the bar end ath as well
as at the central yield hinge. The yield condition givesc ande, Eq.
~6! c, Eq. ~7! u, and Eq.~8! f. Sinceu and dp have remained
constant duringf→g, Eq. ~15! gives

dp5aFu6c8~n7!2uc8~n!1E
n7

n

uc9~n!dnG1d6
p . (27)

Statei indicates another reversal in displacement loading
cycle in displacement variation inb→i results in positivedp

and hence in elongation of the bar~@5–7#!. This effect gives rise
to a reduction in load, as seen in the difference in the ordinate
b and i in Fig. 3~a!. This feature plays an important role i
interpreting experimentally observed hysteretic behavior of s
members under axially repeated loading~@5–7,17#!. Further rep-
etitions of displacement cycling induce further reduction in t
peak strength. Thin lines are drawn in Fig. 3 for five consecut
cycles afteri.

Example 2. A stubby bar of the caseNe /No54 is consid-
ered. It is taken thatk51.7, mp50.7, andd51. The yield condi-
tion is taken to express full plasticity for a rectangular cross s
tion. It reads, e.g., for central moment

ucu1n251. (28)

It is taken thata50.75 corresponding to the rectangular cro
section. Variation ofd is specified as 0→2→0→3. Numerical
results are shown in Fig. 5. Variablesr andeare distinguished due
to eccentricity, which leads to slanting lines in Fig. 5~c! for yield-
ing of the end spring, as described by

e5nd6mp . (29)
Fig. 5 Behavioral diagram of Example 2
MAY 2001, Vol. 68 Õ 429
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This relation is derived by settingke50 andkp56mp in Eq. ~8!.
The state of stress of the bar end is represented by a point bet
this pair of parallel lines and within the yield curve of dotted line
The fact that the allowable domain excludes the stress point~0, 1!,
givesd t50. Deflection curves are sketched in Fig. 6.

Eccentric tension induces bending so that the bar starts to e
gate with a deflected configuration. The elastic behavior up toa
is determined simply withke5k, kp50, u50, andf50; c is
given by Eq.~11!, e by Eq.~12!, and thenc by Eq.~6!; de anddg

are the only nonzero components ofd. Yielding takes place at the
bar end aftera. The yield condition givese in terms ofn. Sub-
stitution ofu50 in Eq.~7! givesc ; Eq. ~8! givesf and Eq.~6! c.
Equation~16! provides

dp5aF E
n1

n

fe9~n!dn2fe8~n!G (30)

as the remaining nonvanishing component ofd. The end spring
starts yielding atb as well as at the bar end, havinge of Eq. ~29!.
The load cannot increase beyond the ordinate ofb. The end
spring and bar end undergo plastic rotation in opposite directio
Sincede anddg remain constant, Eq.~14! gives plastic deforma-
tion at the unloading pointc as

d3
p2d2

p5d32d252ae8~n2!~f32f2!. (31)

Specifiedd therefore determinesf as well asdp. Deflection does
not vary with constantc; c35c2 .

Elastic recovery fromc is described byu5u3 and f5f3 .
The end spring returns elastic also withke5k. Spring factorkp is
found with recourse to Eq.~8!, and hence from

e352mp1n3d5k~c32f3!1kp1n3d. (32)

Equations~6!, ~11!, and~12! give c, c ande, respectively. Deflec-
tion is so small during the elastic processes that the correspon
portions of then-d curve are almost straight.

The bar center yields atd, with c determined from the yield
condition~28!. Sincef remains constant atf3 , Eqs.~7!, ~9!, and
~10! give u, c, and e, respectively. Change in the direction o
varying d at e gives rise to elastic behavior. Processe→f is
analyzed withu5u5 in a manner similar toc→d.

After undergoing central hinging, both the center and end s
yielding at g. The yield condition givesc and e. Equation~6!
provides c, Eq. ~7! u, and Eq. ~8! f. With u65u5 , and f7
5f3 , Eqs.~15! and ~16! are combined to provide

dp5aFu5c8~n6!2uc8~n!1E
n6

n

uc9~n!dn1f3e8~n7!2fe8~n!

1En

fe9~n!dnG1d6
p . (33)

Fig. 6 Deflection curves for Example 2
n7
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The process subsequent toh is close to that inb→c, the
difference being that the bar center yields with vanishing cen
deflectionv50, as shown in Fig. 5~h!. Deflection remains con-
stant, and so is the central hinge rotation. The end hinge is a
vated in addition to the end spring, and contributes to change
dp andf.

Concluding Remarks
Basic equations are first derived and it has been shown thro

examples that they are adequate to determine the hysteretic be
ior of an elastic-perfectly plastic bar under a repeated eccen
axial load. Both ends are supported by piecewise-linear spri
Symmetry is assumed with respect to the bar center, with defl
tion in a definite plane due to restrictions set forth earlier. T
primary disadvantage in this closed-form formulation is that
independent variable is not the displacement but the load. The
a need to judge which path to follow, whenever bifurcation tak
place, such as at reversals in displacement direction, or at
initiation and termination of yielding. Restriction on the magn
tude of deflection is not stringent in engineering applicatio
Small deflection analysis as in this formulation retains suffici
accuracy, unless lateral deflection reaches a magnitude of
original length~@4#!.

Appendix

Separability of Displacement Components and Effects of
Large Deformation. It has been taken for granted in the te
that the relative displacement is divided into four componen
The validity of this treatment was confirmed previously~@3#!, and
is repeated here briefly with due regard to the effect of la
deformation.

When the length changes fromLo to L, it follows from the
definition

Lo1D5E
0

Lo1D

dx

that

D5E
0

L

cosFds2Lo5S E
0

L

cosFds2L D 1~L2Lo!

wheres is the arc length measured along the deflection curve fr
the origin of the Cartesian coordinates~x, y! and F is the slope
angle. The quantity in the first pair of parentheses is caused
change in geometry, and is the displacement which would t
place if a straight bar of lengthL were deflected laterally; the
quantity in the second pair of parentheses is the change in len
The separability of the changes in the geometry and in the len
is thus established without any restriction on the magnitude
deformation.

When deflection is so large that the square of the slope in
deflection curve attains a magnitude of the order of unity,
curvature cannot be approximated by the second derivativey
with respect tox, and pertinent distinction has to be made betwe
thex ands-coordinates. Equations~2! and~13! are no longer valid
in theory. Exact analysis of large deformation has shown that
condition of large deflection is realized when the decrement in
distance between the bar ends attains a magnitude of the ord
the bar length, and, through numerical examples of moderate s
derness, the effect of large deflection has been found not to
significant even under such a condition. Exceptional cases are
extremely slender bars or bars deflected into loops~@3,5–7#!.

Separability of the change in the length into elastic and pla
components is a basic premise in the theory of plasticity. Furt
separation of the plastic deformation into two components
made, because a change in the componentdp is accompanied by
changes in load and other variables, as against the componend t.
The latter is associated with a straight configuration; unlimi
Transactions of the ASME
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plastic elongation can take place underN5No , being controlled
only by displacement constraint at the ends of the bar. W
elongation attains a magnitude of the order ofLo before violating
the condition of Assumption 7, then the lengthL has to replaceLo
in the consideration of geometry of the deformed bar. A sim
account of this effect as well as the consequent changes in c
sectional dimensions was made previously by resorting to the
sumption of the similar figure of cross section together with pl
tic incompressibility~@3#!. As a result it has been found that b
reducing the buckling load in the proportion of (Lo /L)4, the
weakening effect of great elongation is somewhat significant c
pared with the effect of large deflection, under alternate repe
loading with the same extreme in the tension and compres
sides~@5–7#!.
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Contact Stresses in Multilayered
Strands Under Tension and
Torsion1

First, an attempt is made to experimentally test the validity of the linear deforma
derivative results earlier developed for the multilayered wire-rope strands under ten
and torsion. The theoretical results are next utilized to obtain analytical expression
the maximum contact stresses induced in the multilayered strands with metallic wire
These closed-form solutions provide some useful design insights into the influen
several important cable parameters and material properties on the resulting con
stresses. The strong influence of the material modulus of elasticity on the critical str
is highlighted. Significantly, the analysis brings out how the contact stresses can rise
order of magnitude higher levels than that of the nominal stresses.
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Introduction
The problem of stresses and strains in conventional cables

der static loads has been analyzed by several authors. The e
theoretical investigations were extensively reviewed by Cost
@1# and later by Kumar and Cochran@2#. These analyses are cha
acterized by several simplifying assumptions of questionable
lidity. Costello and Phillips@3–5# gave a new direction to thes
studies by adopting a more comprehensive and fundamenta
proach to analyze the static behavior of the cables. They tre
the cables as a group of separate curved rods in the form of
ces. Their ‘‘linearized’’ deformation relations are applicable to t
the wire-ropes of arbitrary cross sections@6,7#. These approximate
relations lead to considerable economy of computational time
the study of the cable characteristics although the analysis rem
essentially numerical in character. Jiang, et al.@8# recently
showed the validity of these relations through their finite elem
analysis. They also found excellent agreement between the d
mation results of the wire-rope strands under axial tensile lo
based on Costello’s analysis and experimental results of Ut
and Jones@9,10#.

Kumar and Cochran@2,11# introduced some additional approx
mations based on order-of-magnitude considerations while ap
ing Costello’s ‘‘linear theory’’ to the wire-rope analysis. This a
proach was instrumental in achieving considerable simplificati
and enabled an analytical prediction of the deformation charac
istics of single strand cables with metallic as well as fibrous co
Later, Kumar, et al.@12# also developed analytical expressions f
critical contact stresses induced by tension and torsion in si
strand cables with fibrous cores. It may be pointed out, howe
that so far no attempt appears to have been made for experim
verification of these theoretical results.

In this paper, first, an attempt is made to experimentally test
validity of the deformation derivative results earlier obtained
multilayered wire-rope strands with metallic core. Subsequen
these earlier deformation relations are utilized for closed-fo
prediction of the resulting maximum contact stresses in th
cables under tension and torsion.

1The work for this paper was carried out at the Laboratory of Applied Mechan
and Reliability Analysis of the Swiss Federal Institute of Technology, Lausanne

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, Ju
12, 1999; final revision, Feb. 24, 2000. Associate Editor: J. W. Ju. Discussion o
paper should be addressed to the Editor, Professor Lewis T. Wheeler, Departm
Mechanical Engineering, University of Houston, Houston, TX 77204-4792, and
be accepted until four months after final publication of the paper itself in the AS
JOURNAL OF APPLIED MECHANICS.
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Summary of Earlier Deformation Derivative Results
Let us consider a single strand cable made up ofn successive

layers of helical wires. Let the layeri have mi wires, each of
radiusRi , helix radiusr i , and helix anglea i . Since the metallic
core is treated as the first layer in the analysis, we have

m151 and a15p/2.

As discussed in the earlier paper@2#, the diameter of the core is
assumed to be large enough to prevent the helical wires in
same layer from touching each other. Instead, the wires in a la
remain in contact with those in the adjacent layers only.

The deformation relations earlier obtained by Kumar and C
chran@2# for the single strand cable under consideration may
summarized as follows:

F̂5F/~AnE!5Fee1Fbb

M̂5M /~ER3!5M ee1Mbb (1)

where

Fe5pS i 51
n @miRi

2 sina i~sin2 a i2n cos2 a i !#/An

Fb5pS i 51
n @miRi

2~r i /R!sin2 a i cosa i #/An

M e5pS i 51
n @miR̂i

3 cosa i$~r i /Ri !~sin2 a i2n cos2 a i !

2~1/4!Ri /r i%#

Mb5pS i 51
n @miR̂i

4 sina i$~r i /Ri !
2 cos2 a i

1~1/4!~11n f sin4 a i cos 2a i !%# (2)

and

An 5 metallic area of cross-section;S i 51
n (mipRi

2)
E 5 Young’s modulus of elasticity of the cable material
F 5 tensile Force, cable is subjected to
L 5 cable length for the test specimen
M 5 torsional moment, cable is subjected to
R 5 cable radius; (R112S j 52

n21Rj1Rn)
Ri* 5 (Ri1r i); i 52,3,..n
R̂i 5 Ri /R; i 51,2,..n
n 5 number of layers of wires in the cable including the

core
r i 5 helix radius for wires in thei th layer; (R112S j 52

i 21Rj
1Ri); i 52,3,..n

e 5 tensile strain for the cable;DL/L
b 5 torsional strain for the cable;R]f/]L
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DL 5 elongation
f 5 angular twist over the cable length
n 5 Poisson’s ratio of the cable material

n f 5 n/(11n).

It may be pointed out that the above analytical relations for
load deformation derivatives are based on several simplifying
proximations. Of these, the expressions for the cross-derivat
Fb and M e do not exactly satisfy the equations relating them
earlier developed by Costello@13# from consideration of ‘‘inde-
pendence of path’’ for work done during loading. This was n
unexpected, however.

Experimental Validation of Deformation Relations

Materials. The single-strand wire-rope experimentally inve
tigated was obtained from Brugg Cables Acier SA~CH-1023,
Crissier, Switzerland!. It had a metallic core and one surroundin
layer of six wires with a common helix angle of 80.4 deg and
overall diameter of 9 mm~Fig. 1!. The core and the helical wire
Journal of Applied Mechanics
he
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had a diameter of 3 mm each. The Young’s modulus of the m
terial was determined by testing the core of the rope and
found to be 157 GPa.

Experimental Methods. Specimens with length of 500 mm
were cut from the as-received rope. To grip the specimens, sp
hollow steel cylinders, 50 mm in length, were machined with
internal diameter of about 9 mm, equal to the effective diamete
the rope, and an outside diameter of 15 mm to fit the hydra
grips of the MTS machine. To assure firm mounting of the spe
mens and avoid any slippage of the rope during testing, the e
of the rope were brasured at the outside ends of the steel c
ders. Figure 1 shows the schematic diagram of a typical speci
along with the cable cross section.

The experiments were performed on an MTS 809 Servohyd
lic axial-torsional machine with a TestWare-SX software to reco
the data. Three types of experiments were carried out: a sim
tension, a simple torsion, and the combined tension-torsion.
experiments were deformation controlled with rates of 1 mm/m
in tension and 20 deg/min in torsion. As explained at the end
Fig. 1 Schematic diagram showing test specimen along with the cable cross
section

Fig. 2 Load-deformation curve obtained through simple tension test
MAY 2001, Vol. 68 Õ 433
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Fig. 3 Torque-deformation curve obtained through simple torsion test

Fig. 4 „a… Force-displacement plot obtained through combined tension and torsion test,
„b… torque-angle plot obtained through combined tension and torsion test
AY 2001 Transactions of the ASME
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this section, a judicious choice of these rates is rather impor
for achieving higher accuracies in the calculations of the par
eters. The tension and torsional loads were recorded as a fun
of displacement and the angular twist. The tests were repeate
various traction and/or torsion conditions. The excellent reprod
ibility observed established the reliability of the experimen
data. The influence of loading rates on the deformation chara
istics, however, was not considered in the present investigati

Figures 2–4 show the experimentally obtained loa
deformation curves. The first curve presented in Fig. 2 shows
variation of tensile force with increasing displacement for the
periment wherein no torsional twist was permitted. The slope
the ‘‘linear’’ segment of this curve—indicated by the tw
arrows—was obtained using least square fit. The slope of
straight line is required for computation of the deformation d
rivative Fe using the relation

Fe5@L/~AE!#.~]F/]L !.

Figure 3 represents the variation of the torsional moment w
angular twist for the next experiment with fixed specimen leng
The slope of the ‘‘linear’’ part of the curve shown between t
arrows is utilized to compute the derivativeMb as follows:

Mb5@L/~ER4!#.~]M /]f!.

The tensile and torsional loads are now applied to a third sp
men when the displacement as well as angular twist were c
trolled to increase simultaneously at suitably selected cons
rates, as pointed out earlier. The data thus gathered are pres
as force versus displacement~Fig. 4~a!! and the torsional momen
versus angular twist~Fig. 4~b!!. The slopes of the straight line fit
for the ‘‘linear’’ parts lying between the two arrows are needed
obtain the remaining two deformation derivativesFb and M e .
These ‘‘cross derivatives’’ are evaluated using the following re
tions deduced from Eqs.~1!:

Fb5@$L/~AE!%.~]F/]L !2Fe#.~1/R!.~ L̇/ḟ !

M e5@$L/~ER4!%.~]M /]f!2Mb#.R.~ḟ/L̇ !.

It may be pointed out that the expressions within the square br
ets in the numerators in these two relations forFb andM e appear
as a difference between two terms which are in general of
same order of magnitude. Furthermore, in each case, the te
and torsional loading rates directly influence the two magnitu
and their relative closeness and hence are likely to have signifi
influence on sensitivity of the experimental parameter values
computed. It is therefore imperative to choose the tensile
torsional rates judiciously so that the two terms are ‘‘wide apa
so as to ensure higher computational accuracies.

Comparison of Experimental and Analytical Results. The
theoretical values of the force and moment deformation der
tives are computed for the 731 single strand cable used for th
investigation. The values of these derivatives are also obta
from the estimated slopes of the ‘‘linear segments’’ of the se
the load-deformation curves generated experimentally as
scribed earlier. A comparison of the theoretical and correspond
experimental results is presented in Table 1. Evidently, the th
retical results based on the Costello’s ‘‘linear theory’’ and t
additional simplifying approximations of Kumar and Cochran@2#
compare quite favorably with the corresponding experimental
ues. The discrepancy between theoretical and experimental re

Table 1 Comparison between analytical and experimental val-
ues for the deformation derivatives of a simple 7 Ã1 cable

Deformation Derivatives Fe Fb M e Mb

Theoretical Values 0.96 0.093 0.210 0.079
Experimental Values 0.92 0.107 0.215 0.095
Journal of Applied Mechanics
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is found to be maximum for the parameterMb . Even here, the
error seems to be well within the normally acceptable limits. W
therefore conclude that the approximate analytical procedure
lier followed is reasonably accurate for design and other pract
applications. Next, an attempt is made to utilize the closed-fo
deformation results for predicting the maximum normal cont
stresses in the multilayered strands with metallic core.

Analysis for Contact Forces and Stresses

Contact Forces. On consideration of equilibrium of helica
wires, the normal force per unit length on the wires (Qi) as caused
by the normal and binormal force components in thei th layer
through contact with those in the adjacent inner layer, can
written as~@2#!

Qi5Tia~cos2 a i8/r i8!2Tib~sina i8 cosa i8/r i8! (3)

where

Tia 5 @pRi
2E(e2Da i cotai)#

Tib 5 @pRi
4E/(4r i

2)cos2 ai#@(Dai(12nf cos 2ai)
1n fd i sinai cosai]

Da i 5 increment in the helix angle of wires in thei th layer
under loads

5 e(11n)(12n i)sinai cosai2b(ri /R)(12ni)sin2 ai
d i 5 2ne1(n/r i)@S j 52

i 21(2Da jRj cotaj)1DaiRi cotai#
n j 5 @n(Rj /r j )cos2 aj#

(.)8 5 ~.! after deformation under applied loads.

On substitution ofDa i from above and making several simplify
ing approximations based on order of magnitude of the vari
terms, the earlier expression for the contact force per unit len
can be written in the form

Qi5@p~Ri
2/r i !#E cos2 a i@FeMb2M eFb#2@AFiF̂1AMiM̂ #;

i 52,3,..,n (4)

where

AFi 5 @Mb(sin2 ai2n cos2 ai)2Me(ri /R)sinai cosai .
$110.25(Ri /r i)

2 sin2 ai%].
AMi 5 @2Fb(sin2 ai2n cos2 ai)1Fe(ri /R)sinai cosai .

$110.25(Ri /r i)
2 sin2 ai%].

It may be pointed out that the interaction between wires of
adjacent layers is characterized by two distinct types of conta
The wires in the second layer touch the metallic core continuou
along a helical line. In contrast, the wires in the third and high
layers cross their neighbors in the adjacent layers—above
below—at an angle and thus make only ‘‘point contacts.’’ T
two situations, being characteristically different, are trea
separately.

Case 1 Contact Forces Between Core and the Adjacent La
i.e., for i52. Here, the wires in the second layer make a ‘‘lin
contact’’ with the metallic core. In order to use the Hertz theo
for determination of the contact stresses, the expression for
corresponding effective normal contact force per unit length
wires in the second layer due to axial and binormal force com
nents,Q22n , is estimated as

Q22n5S j 52
n @mjQj /sina j #@sina2 /m2#. (5)

Case 2 Contact Forces in the Outer Layers, i.e., for i53..,n
In contrast, these layers are characterized by ‘‘point contacts’’
hence the normal compressive forces induced at the point
contact are determined first. For the outermost layer of wires,
i 5n, the effective normal force at the contact points is estima
by multiplying Qi by the length of the wire segment in thei th
layer between its two successive points of contact with the w
in the adjacent inner layer~@14#!. Hence,
MAY 2001, Vol. 68 Õ 435



Fig. 5 Stresses and deflections between two bodies in contact at a point „†15‡…
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Pn5Qn@~2pRn21* /mn21!sinan21 /usin~an2an21!u#. (6)

It may be emphasized that for the generali th layer lying inside
the outermost one, the normal contact forces develop due to
tributions through axial and binormal force components indu
in wires in the layersi, (i 11), (i 12).. andn. The resulting
normal force,Pi , generated at the ‘‘contact points’’ between th
wires in this layer and the adjacent inner layer is obtained
~@14#!

Pi5S j 5 i
n @mjQj /sina j #.@~2pRi 21* sina i sina i 21#/

@mimi 21 sinua i2a i -1u# i 53,.,n. (7)

Contact Stresses

Case 1 Contact Stresses Between Core and the Adja
Layer, i.e., for i52. A direct application of the Hertz theory o
contact stresses leads to the following relation for maximum co
pressive stresses in the region of contact between the wires in
second layer and the metallic core wire

s25AEAQ22n@~sin2 a2 /R1!1~1/R2!#/A@2p~12n2!# (8)

In dimensionless form, the above result simplifies to:

ŝ25s2 /AEsnom

5AQ22n@~sin2 a2 /R1!1~1/R2!#/snom/A@2p~12n2!#

(9)

where

snom 5 (F/An).

Case 2 Contact Stresses in the Outer Layers, i.e., for i53..,n
As was pointed out earlier, the helical wires in the third and ot
outer layers make ‘‘point contacts’’ with those in their inner a
jacent layers. The corresponding expressions for the maxim
compressive stresses at these ‘‘points,’’ also given by He
theory, however, are relatively more involved and are given
~@15#!

s i5cs~b/D! (10)

where

a 5 semi-major axis of the contact ellipse
436 Õ Vol. 68, MAY 2001
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b 5 @1.5kE(k8)PiD/p#1/3; semi-minor axis of the contact
ellipse

cs 5 a variable fraction dependent ond, Fig. 5 ~@15#!
d 5 ratio (B/A) also equal to

@(1/k2)E(k8)2K(k8)/@K(k8)2E(k8)#
k 5 (b/a)

k8 5 A(12k2)
A 5 (1/4)@(1/Ri)2(cos2 ai /Ri21* )1(1/Ri 21)

1(cos2 ai21 /Ri21* )]2(1/4)@(1/Ri1cos2 ai /Ri21*
11/Ri 212cos2 ai21 /Ri21* )224(1/Ri2cos2 ai /Ri21* )
3(1/Ri 211cos2 ai21 /Ri21* )sin2 c#1/2

B 5 (1/4)@(1/Ri)2(cos2 ai /Ri21* )1(1/Ri 21)
1(cos2 ai21 /Ri21* )]1(1/4)@(1/Ri1cos2 ai /Ri21*
11/Ri 212cos2 ai21 /Ri21* )214(1/Ri1cos2 ai /Ri21* )
3(1/Ri 212cos2 ai21 /Ri21* )sin2 c#1/2

E(k8) 5 complete elliptic integral of second kind
K(k8) 5 complete elliptic integral of first kind

c 5 (a i2a i 21)
D 5 @2(12n2)/E#/(A1B).

For applications, the value ofd first determined from the wire-
rope data is made use of to read the corresponding values ofk, k8,
andcs from the plots in Fig. 5~@15#!. The need for such graphica
estimation ofcs appears to pose a major challenge, especially
view of the intended analytical representation of the cont
stresses. To overcome this difficulty, an attempt is made to
obtain an explicit approximate expression ford by solving the
earlier equation relating it withk, k8, and the two elliptic integrals
of k8. Undertaking the series expansions of the elliptic integr
~@16#!, the expression obtained for this variable can be written

d5~cd /k!2 (11)

where

cd5@11~1/2!2~1/2!k821~1/2.3/4!2~1/3!k841.#/@1

1~1/2!2~3/2!k821~1/2.3/4!2~5/3!k841#.

Although the fractioncd is itself a function ofk8 and hencek, it
may be observed that its values would always lie within a narr
band. Therefore, it is possible to take
Transactions of the ASME
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while treating the parametercd as a constant, it being only mar
ginally sensitive to the values ofd. On substitution of this value o
k, the expression for the maximum contact stresses takes the

s i5coPi
1/3d21/6D22/3 (13)

where

s i 5 maximum contact stresses on contacting wires ini th and
( i 21)th layers

co 5 cs@0.75cd(12k82/423k84/642 . . . .)#1/3.

It so turns out that for the entire range ofd-values corresponding
to the practical values ofc lying in the interval~0,p/3!, the coef-
ficient co hovers around the value~2/3! within less than five per-
cent. Accepting this mean value ofco , relatively much simpler
expression is obtained for the contact stresses as indicated b

s i5~2/3!Pi
1/3d21/6@2~12n2!/$~A1B!E%#22/3 (14)

where

Pi5Ep~FeMb2M eFb!21@ F̂S j 5 i
n $AF j

~mjRj
2/r j !

3~cos2 a j /sina j !%1M̂S j 5 i
n $AM j

mj~Rj
2/r j !

3~cos2 a j /sina j !%#.

Example
For a better appreciation of the influence of various parame

on the contact stresses, it is now proposed to take up a partic
example of a three-layered cable with the geometry and the
responding deformation derivative data given as follows~@2#!:

R15R25R35a;

m151, m256, m3512;

a15p/2, a25a~right lay!, a35~p2a! ~ lang lay!;

Fe5~1/19!@1118 sina~sin2 a2n cos2 a!#;

Fb52~36/95!sin2 a cosa;

M e52~36p/125!~sin2 a2n cos2 a!cosa;

Mb5~216p/625!@sina cos2 a1~1/48!sina~1

1n f sin4 a cos 2a!1~1/864!/~11n!#.

It may be pointed out that wires within the second layer are jus
contact with their adjacent neighbors in the same layer, howe
these contacts are ignored for application of the results of
analysis. In other words, the treatment followed here assumes
outside wires to have ‘‘slightly’’ lower diameter than that of th
core.

On substitution of the above data, the following expressions
the normal force per unit length of contact between the core
the wires in the second layer as well as that for the contact fo
at the points of contact between the wires of the second and
layer are obtained:

Q2235~pasnomcos2 a sina/2!@11sina$1118 sin3 a

148 cos2 a~1112 sin3 a!%#21@19~sin2 a2n cos2 a!

3~25/12181 cos2 a1n f sin4 a cos 2a!1~125/36!

3~tnom/snom!cosa$306 sina~sin2 a2n cos2 a!215%#

(15)

P35~pa2snomsina cosa!@11sina$1118 sin3 a148 cos2 a

3~1112 sin3 a!%#21@19~sin2 a2n cos2 a!$cos2 a1~1/16!

3~11n f sin4 a cos 2a!11/288%2~125/18!
Journal of Applied Mechanics
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3~tnom/snom!cosa$119 sina~sin2 a2n cos2 a!%# (16)

where

tnom5M /~pR3!.

The subsequent application of Hertz theory of contact stres
leads to their critical values in the cables as indicated below.

Case 1 Contact Stresses Between Core and the Second L
Here, the maximum contact stresses obtained can be written

s25~1/2!AEsnomcosaAsina~11sin2 a!/~12n2!@11sina.$1

118 sin3 a148 cos2 a~1112 sin3 a!%#21/2@19~sin2 a

2cos2 a!~25/12181 cos2 a1n f sin4 a cos 2a!1~125/36!

3~tnom/snom!cosa$306 sina~sin2 a2cos2 a!215%#1/2.(17)

In dimensionless form, the corresponding expressions take
form

ŝ25~1/2!AEsnomcosaAsina~11sin2 a!@~12n2!#21/2

3@11sina$1118 sin3 a148 cos2 a~1

112 sin3 a!%#21/2@19~sin2 a2cos2 a!~25/12181 cos2 a

1n f sin4 a cos 2a!1~125/36!~tnom/snom!

3cosa$306 sina~sin2 a2cos2 a!215%#1/2. (18)

Case 2 Contact Stresses Between Wires in the Second
Third Layer. In this case, the maximum contact stresses
given by

ŝ35~1/3!@E2snom#1/3@2p sina cosa/~12n2!2#1/3d21/6

3@11sina$1118 sin3 a148 cos2 a~1112 sin3 a!%#21/3

3@19~sin2 a2cos2 a!$cos2 a1~1/16!~11n f sin4 a cos 2a

11/288%2~125/18!~tnom/snom!cosa$119 sina

3~sin2 a2cos2 a!%#1/3. (19)

In dimensionless form, the corresponding expressions take
form

ŝ35~1/3!@2p sina cosa/~12n2!2#1/3d21/6@11sina$1

118 sin3 a148 cos2 a~1112 sin3 a!%#21/3@19~sin2 a

2cos2 a!$cos2 a1~1/16!~11n f sin4 a cos 2a11/288%

2~125/18!~tnom/snom!cosa$119 sina~sin2 a

2cos2 a!%#1/3 (20)

where

ŝ35s3 /@E2snom#1/3

d5@11A12~12cos4 a/9!sin2 2a#2/@~12cos4 a/9!sin2 2a#.

Results and Discussion
First, an attempt is made to experimentally test the validity

the linear deformation derivative results earlier developed for
multilayered wire-rope strands under tension and torsion. For t
we take up a particular example of a simple strand with meta
core and an adjacent layer of six helical wires as described in
earlier section on experimental validation of deformation re
tions. Its deformation derivative values based on the theoret
analysis are found to be in reasonable agreement with the co
sponding experimentally obtained results. The experimental t
thus support the validity of the earlier analytical approach prop
ing the use of suitable approximations based on order
MAY 2001, Vol. 68 Õ 437
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magnitude considerations while applying Costello’s ‘‘line
theory’’ for prediction of deformations in the strands under te
sion and torsion.

The theoretical analysis subsequently undertaken utilizes t
closed-form deformation derivative results together with He
theory of contact stresses in order to develop analytical exp
sions for the maximum contact stresses in the cables. The re
are rather general and apply to any arbitrary multilayered str
with metallic core. The importance of such explicit analytical p
dictions cannot be overemphasized. The results show that
Poisson’s ratio of the cable material does not have much effec
the critical stresses. In contrast, the material modulus of elast
is an important parameter with considerable influence on the c
tact stresses. For the cables made of material such as steel,
‘‘modest’’ loading, the hike in the stress levels in the conta
regions is likely to be rather large.

It may be noted that the closer the layer of wires lies to
core, the higher would be the contact forces induced due to
sion and torsion. Thus, the forces would be highest between
core and its adjacent layer and significantly lower on the ou
most layer. Yet, the maximum contact stresses on wires in
core and the adjacent layer are unlikely to be at the highest le
This happens by virtue of the ‘‘line contact’’ interaction betwe
these innermost mating layers unlike all other outer layers c
acterized by ‘‘point contacts.’’ The contact stresses between
core and the adjacent layer of helical wires are found to be p
438 Õ Vol. 68, MAY 2001
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portional to the square-root of the rigidity modulus while tho
among wires of the adjacent outer layers are proportiona
@E#2/3. As a consequence, in spite of the lower contact for
involved, the outer layers, especially the third and its inner c
tacting layer may suffer higher contact stresses. Interestingly
also follows that under ‘‘modest’’ loading of the cables made
materials like steel which have rather ‘‘large’’ values of the rigi
ity modulus, these critical stresses are likely to be the highes
the points of contact between the second and third layers.

For a better assessment of the effect of the various impor
parameters on rope design, the critical stresses are compute
the typical three-layered strand with metallic core considered
lier. Here, the wires of the second and third layers have same h
angles but opposite lays. The plots showing the influence of so
important design parameters on maximum dimensionless con
stresses in the cables are obtained~Figs. 6–8!. Figure 6 shows the
effect of the helix angle parametera on the nondimensionalized
critical stress values when the cables are subjected to pure te
loads as well as the case while under combined tension and
sion. Of the two stresses, the values ofŝ3 remain significantly
higher as expected. Their values, however, continually decre
as the helix angle increases from 60 to 90 deg for ropes w
regular lay in the second and lang lay in the third layer. Almo
similar behavior is observed as the helix anglea decreases from
120 to 90 deg.
Fig. 6 Effect of a on dimensionless contact stresses

Fig. 7 Variation of critical stresses as influenced by nominal tensile stress
Transactions of the ASME
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Fig. 8 Prediction of the ratio „snom Õtnom … for zero critical stresses and for
rotation-constrained case
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For a better appreciation on the order of contact stresses
duced in the cables, their values are now obtained in dimensi
form ~Fig. 7!. As expected, for relatively modest loads, the ma
mum stresss3 induced in the contacting region between the th
and the second layer is higher thans2 , i.e., the stress between th
core and its adjacent layer. However, for relatively larger ten
loads and/or in the presence of significant torsional loads,
trend gets reversed. Interestingly, both the maximum con
stresses turn out to be virtually an order of magnitude higher t
the nominal stresses applied. Consequently, even for the mo
nominal cable stresses, the level of compressive stresses in
interior can reach that of the ultimate tensile strength of the ca
material. That perhaps provides an explanation for the bro
inner wires observed in the cables after long use even under m
est loading.

Interestingly, through a judicious choice of the nominal tens
stress to torsional stress ratio based on the helix anglea, it seems
theoretically possible to achieve a zero contact stress leve
either of the two cases considered—not both. Figure 8 brings
how the helix anglea influences this choice for which the gene
ally undesirable contact stressesŝ2 or ŝ3 become zero. Also pre
sented here is the plot of (snom/tnom) versusa for the rotation-
constrained case. It may be noted that for the casetnom50, both
the contact stresses would be nonzero and significantly la
Similarly, for the rotation-constrained case, none of the two c
tact stresses would vanish regardless of the choice ofa. However,
the situation may undergo qualitative change in cases of stra
with more than two outer layers.

Concluding Remarks
First, the experimental test results support the general vali

of the analytical expressions for the deformation derivatives e
lier developed for single strand cable with multiple layers of h
lical wires around the metallic core. The theoretical analysis s
sequently undertaken utilizes the Hertz theory of contact stre
together with these analytical expressions in order to obtain
closed-form expressions for the maximum contact stresses in
cable. The critical compressive stresses are found to be stro
dependent upon the material modulus of rigidity and the he
angles of wires in the various layers. In view of the point conta
between the wires in the second and other outer layers, the cr
stresses in the strands with metallic core and surrounded by tw
more layers are likely to be significantly higher than the cor
sponding values in those with fibrous cores.

Through application of the general results to a three-laye
single strand cable with metallic core, it is shown that even tho
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the contact forces on the core and its adjacent layer would
highest, in general, the critical stresses are likely to attain
highest levels in the contacting region on wires between the
ond and third layers. It is interesting to note that even for
modest loading of cables made of materials like steel with rat
high values ofE, the compressive stresses in the region of cont
between the wires can attain the ultimate tensile stress levels

For cable designs with regular and lang lay in the altern
layers, the critical stresses are relatively smaller when the h
angles are close top/2. Hence such ‘‘large’’ helix angles are
likely to promote longer life-span. In contrast, in the wire ro
applications for dissipating energy, the smaller helix angles in
vicinity of 1p/3 or 2p/3 that result in larger contact stresses m
be recommended.
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In this paper, the elastic field in an infinite elastic body containing a polyhedral inclus
with uniform eigenstrains is investigated. Exact solutions are obtained for the stress
in and around a fully general polyhedron, i.e., an arbitrary bounded region of thr
dimensional space with a piecewise planner boundary. Numerical results are pres
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Introduction
The elastic field due to inclusions in an infinitely extended el

tic media has been extensively investigated following Eshelb
pioneering work~@1#!, and its summary is given in a book b
Mura @2#. However, there have been only a limited number
analytic solutions for problems of nonellipsoidal inclusions, ca
of cuboidal ~@3–8#!, rectangular~@9,10#!, and cylindrical ~@11–
14#! shapes.

Rodin @15# considered a problem of Eshelby’s tensors for p
lygonal and polyhedral inclusions where the Eshelby’s tens
were given as a double or triple integral, which was evaluated
subdividing the inclusions into two or three-dimensional rect
gular simplexes. He showed an approach to calculate the Es
by’s tensor for a polyhedral inclusion without explicit solution
Rodin @15# and Markenscoff@16# proved that polyhedral inclu-
sions with constant Eshelby’s tensor do not exist. Lubarda
Markenscoff@17# showed that the Eshelby property~constancy of
the stress for uniform eigenstrain! does not hold for any inclusion
bounded by a polynomial surface of higher than the second
gree, or any inclusion bounded by a nonconvex surface. They
showed that inclusions bounded by segments of two or more
ferent surfaces are also precluded. Recently, Nozaki and T
@18# analyzed the elastic field in a polygonal inclusion in an in
nite body and proposed a method to estimate the effective s
ness of a composite with nonellipsoidal inhomogeneities. T
carried out an area integral to obtain the displacement field~@2#!
by subdividing a polygonal region into triangles and differentia
the displacement field to obtain the strain and the stress fie
They noted the special characteristic with a regular polygonal
clusion. More recently, Ru@19# obtained the analytic solution o
elastic fields in a plane or half-plane containing an inclusion
arbitrary shape using the techniques of analytical continuation
conformal mapping.

The present paper is concerned with the solutions for the ela
field arising from an arbitrary polyhedral inclusion with uniform
distributed eigenstrains in an infinite elastic body. In this pap

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, Ma
13, 1999; final revision, April 14, 2000. Editor: L. T. Wheeler. Discussion on
paper should be addressed to the Editor, Professor Lewis T. Wheeler, Departm
Mechanical Engineering, University of Houston, Houston, TX 77204-4792, and
be accepted until four months after final publication of the paper itself in the AS
JOURNAL OF APPLIED MECHANICS.
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the displacement is first given as a volume integral over the in
sion ~@2#!, which is then transformed to a surface integral over
surface of the inclusion by integration by parts. The result
surface integral is evaluated by subdividing the surface into r
angular triangles~@15,20#!. The solutions for strain, stress, an
Eshelby’s tensors will be obtained by analytical differentiation
the displacement field. Subsequently, we will calculate the st
energy of the body by using a numerical integration formula
three-dimensional simplexes~@21#!. Numerical results will be pre-
sented for the stress field and the strain energy in a body con
ing a polyhedral inclusion. The results of the effective stiffness
a composite with polyhedral inhomogeneities will also be p
sented.

After the publication of our previous paper~@18#!, Rodin @22#
claimed that the method to estimate the effective stiffness o
composite in the paper contains a serious flaw and hence th
sults concerning composite stiffness are incorrect. In this pape
will show that our method provides still a good approximation
the stiffness of a composite with polygonal inhomogeneities. T
degree of accuracy of the present method will be shown to
crease as the polygonal inhomogeneity approaches to a circle
also, as the stiffness difference between the inhomogeneity
the matrix becomes small. This will be proved numerically
comparison between the solutions based on the present mode
by the boundary element method~BEM!.

2 Formulation

2.1 Statement of the Problem. Consider an infinite, elastic
homogeneous and isotropic domainD having arbitrary shaped
polyhedral inclusionV with uniform eigenstrain« i j* in a Cartesian
coordinate system (x1 ,x2 ,x3). The matrix domain is denoted a
D2V. The boundary ofV ~uVu! is assumed to be formed byN
facesuVu I (I 512N), uVu I being a polygon withMI>3 vertices.
For each face the outer unit normalnI , unI u51 is introduced.

The eigenstrain« i j* is given some constant value inV but van-
ishes inD2V. For prescribed eigenstrain« i j* in V, the resulting
stresss i j is given by

s i j 5Ci jkl ~«kl2«kl* ! in D, (1)

whereCi jkl is the elastic stiffness tensor of the body and«kl is the
strain induced by the inclusion. Using Green’s functionGi j (x
2x8), the displacement field inside and outside ofV can be writ-
ten as~@2#!
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ui~x!52Cjkmn«mn* E
V

Gi j ,k~x2x8!dx8, (2)

wherex is an arbitrary point inD andx8 is a point insideV. To
evaluate the integral, it is convenient to rewrite Eq.~2! by inte-
gration by parts. The equation is transformed to

ui~x!5Cjkmn«mn* E
uVu

Gi j ~x2x8!nkdS~x8!

5Cjkmn«mn* (
I 51

N

nk
I E

uVuI

Gi j ~x2x8!dS~x8!, (3)

wheredS is the surface element. For isotropic media, the Gree
function is given as~@2#!

Gi j ~x2x8!5
1

16pm~12n!ux2x8u

3F ~324n!dij1
~xi2xi8!~xj2xj8!

ux2x8u2 G , (4)

wherem is the shear modulus,n is the Poisson’s ratio, andd i j is
the Kronecker delta. Substituting Eq.~4! into Eq. ~3!, we obtain

ui~x!5Dimn«mn* (5)

where

Dimn5
Cikmn

16pm~12n! (I 51

N

nk
I @~324n!d i j I 1

I 1I 2
I ~ i j !# (6)

I 1
I 5E

uVuI

1

ux2x8u
dS~x8! (7)

I 2
I ~ i j !5E

uVuI

~xi2xi8!~xj2xj8!

ux2x8u3 dS~x8!. (8)

2.2 Subdivision of the Surface of the Polyhedron. To per-
form integralsI 1

I and I 2
I ( i j ) , we subdivide the surfaces of a poly

hedron into rectangular triangles. Let nowPI be the orthogonal
projection ofx onto the faceuVu I , and letCJ

I ~J51,2, . . . ,MI :
CMI11

I 5C1
I ! be a vertex ofuVu I ~see Fig. 1!. The orthogonal

projection of PI onto the edgeCJ
I CJ11

I will be denoted byPJ
I .

Using PI as a pivot,uVu I is now subdivided into pairs of rectan
gular triangles (TI1 ,TI18 ),(TI2 ,TI28 ), . . . ,(TIM 1

,TIM 1
8 ). For ex-

ample, the one associated with the edgeCJ
I CJ11

I is
(TIJ :PI PJ

I CJ
I ,TIJ8 :PI PJ

I CJ11
I ). Also, we introduce vectors show

in Fig. 1 as

rI : initial point x, terminal point PI ,

rJ
I : initial point x, terminal point PJ

I ,

gJ
I : initial point x, terminal point CJ

I ,

aJ
I : initial point PI , terminal point PJ

I ,

bJ
I : initial point PJ

I , terminal point CJ
I ,

cJ
I : initial point PI , terminal point CJ

I ,

gJ11
I : initial point x, terminal point CJ11

I ,

bJ11
I : initial point PI

J , terminal point CJ11
I ,

cJ11
I : initial point PI , terminal point CJ11

I .

The integralI 1
I , I 2

I ( i j ) can be expressed as
442 Õ Vol. 68, MAY 2001
n’s
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I 1
I 5(

J51

MI

@s1I 1
IJ1s18~ I 1

IJ!8#, (9)

I 2
I ~ i j !5(

J51

MI

@s2I 2
IJ~ i j !1s28~ I 2

IJ~ i j !!8#, (10)

where

I 1
IJ5E

TIJ

1

ux2x8u
dS~x8!, (11)

~ I 1
IJ!85E

TIJ8

1

ux2x8u
dS~x8!, (12)

I 2
IJ~ i j !5E

TIJ

~xi2xi8!~xj2xj8!

ux2x8u3 dS~x8!, (13)

~ I 2
IJ~ i j !!85E

TIJ8

~xi2xi8!~xj2xj8!

ux2x8u3 dS~x8!, (14)

In Eqs.~9! and~10!, s1 , s18 ands2 , s28 are the signs ofI 1
IJ , (I 1

IJ)8
and I 2

IJ( i j ) , (I 2
IJ( i j ))8, respectively, which are determined by th

locations of the pointx and the rectangular trianglesTIJ , TIJ8 on
which the integrals are defined~@15,20#!.

At first we perform the integrals in Eqs.~11! and~13! overTIJ .
We introduce new parameters~j,h,z! defined by

x82x5jrJ
I 1hgJ

I 1zrI ~0<j,h,z<1!. (15)

In Eqs.~11!–~14!, x8 is the point on surface of the polyhedron s
j, h, andz have the following relationship:

j1h1z51. (16)

Using Eq.~16!, we can modify Eq.~15! as

x82x5jaJ
I 1hcJ

I 1rI ~0<j,h<1!. (17)

The surface elementdS(x8) is transformed to

dS~x8!5uaJ
I uubJ

I udjdh. (18)

The integralsI 1
IJ and I 2

IJ( i j ) are reduced to

I 1
IJ5E

TIJ

1

ux2x8u
dS~x8!5E

0

1E
0

12h 1

ujaJ
I 1hcJ

I 1rI u
uaJ

I uubJ
I udjdh,

(19)

Fig. 1 Subdivision of a side of the polyhedron
Transactions of the ASME
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I 2
IJ~ i j !5E

TIJ

~xi2xi8!~xj2xj8!

ux2x8u3 dS~x8!

5E
0

1E
0

12h $j~aJ
I ! i1h~cJ

I ! i1~r I ! i%$j~aJ
I ! j1h~cJ

I ! j1~r I ! j%

ujaJ
I 1hcJ

I 1rI u3

3uaJ
I uubJ

I udjdh. (20)

Using the integral formulas given in the Appendix and the
thogonality of the vectors, we can perform the above integral
arrive at

I 1
IJ5uaJ

I u logH ubJ
I u1ugJ

I u
urJ

I u J 1urI uFIJ , (21)

I 2
IJ~ i j !5~ I 2

IJ~ i j !!11~ I 2
IJ~ i j !!21~ I 2

IJ~ i j !!3 , (22)

where

~ I 2
IJ~ i j !!15~aJ

I ! i~aJ
I ! jF2~ ugJ

I u2urJ
I u!

uaJ
I uubJ

I u
2

ugJ
I u2urI u

uaJ
I uubJ

I u

1
uaJ

I u
ubJ

I u2 logH ubJ
I u1ugJ

I u
urJ

I u J 1
ucJ

I uurI u
ubJ

I u2uaJ
I u2 FIJG , (23)

~ I 2
IJ~ i j !!252$~aJ

I ! i~cJ
I ! j1~aJ

I ! j~cJ
I ! i%F urI u2urJ

I u
uaJ

I uubJ
I u

1
uaJ

I u
ubJ

I u2 logH ubJ
I u1ugJ

I u
urJ

I u J 1
urI u
ubJ

I u2 FIJG
2$~aJ

I ! i~r I ! j1~aJ
I ! j~r I ! i%F 1

uaJ
I u

logH ubJ
I u1ugJ

I u
urJ

I u J
2

ucJ
I u

uaJ
I uubJ

I u
logH ucJ

I u1ugJ
I u

urI u J 2
1

ubJ
I u

logH urI u
urJ

I u1uaJ
I uJ G ,

(24)

~ I 2
I j ~ i j !!35~cJ

I ! i~cJ
I ! jF2

uaJ
I u~ ugJ

I u2urI u!
ubJ

I uucJ
I u2 1

uaJ
I u

ubJ
I u2

3 logH ubJ
I u1ugJ

I u
urJ

I u J 1
urI u
ubJ

I u2 FIJG2$~cJ
I ! i~r I ! j

1~cJ
I ! j~r I ! i%F uaJ

I u
ucJ

I uubJ
I u

logH ucJ
I u1ugJ

I u
urI u J

1
1

ubJ
I u

logH urI u
urJ

I u1uaJ
I uJ G2

~r I ! i~r I ! j

urI u
FIJ . (25)

In the above equations,FIJ is

FIJ5tan21
ubJ

I uugJ
I u

urI uuaJ
I u

2tan21
ubJ

I uuaJ
I u

urI uugJ
I u

2tan21
ubJ

I u
uaJ

I u
. (26)

Integrals (I 1
IJ)8 and (I 2

IJ( i j ))8 in Eqs.~9! and~10! are obtained by
replacing the vectorsbJ

I , cJ
I , gJ

I by bJ11
I , cJ11

I , gJ11
I in Eq. ~21!

and ~23!–~26! ~see Fig. 1!.
Strain fields can be obtained by differentiating Eq.~5! as

« i j ~x!5
1

2 S ]ui

]xj
1

]uj

]xi
D5

1

2
~Dimn, j1D jmn,i !«mn* 5Si jmn«mn* ,

(27)

where Si jmn is the Eshelby’s tensor for a polyhedral inclusion. T
explicit expression ofSi jmn is given in the Appendix. The stres
field in D is obtained by substituting Eq.~27! into Eq. ~1!.

To obtain the solutions for the elastic field on the boundary
the inclusion, we calculate the limiting solutions shown in t
Journal of Applied Mechanics
r-
to

e

of
e

Appendix, which may also be required to calculate the elastic fi
inside or outside the inclusion when the absolute values of
vectors are equal to zero.

The elastic strain energy in the infinite domainD is obtained as
~@2#!

W* 5
1

2 ED
s i j ~x!$« i j ~x!2« i j* %dx52

1

2 EV
s i j ~x!« i j* dx

52
1

2
$Ci jkl ~S̄klmn2I klmn!«mn* %« i j* VV , (28)

whereS̄klmn is the averaged Eshelby’s tensor~@18#! defined by

S̄klmn5
1

VV
E

V
Sklmn~x!dx, (29)

where the bar over the quantity means the average over the
ume of the inclusion (VV).

3 Response to Rodin’s Question
In our previous paper~@18#!, we analyzed the elastic field in

polygonal inclusion and proposed a method to calculate the ef
tive stiffness of a composite reinforced by nonellipsoidal inhom
geneities as an extension of Eshelby’s equivalent inclus
method. However, Rodin@22# claimed that the following relation-
ship in our paper does not hold in general except for the cas
ellipsoidal inclusions and hence our result for composite stiffn
is incorrect.

Si jkl ~x!«kl* ~x!5Si jkl ~x! «kl* ~x!. (30)

In Eq. ~30!, x is a point inside the inclusion,« i j* (x) is the equiva-
lent eigenstrain, andSi jkl (x) is the Eshelby’s tensor for a polygo
nal inclusion. The bar over the quantities means the average
the volume of inclusion. In this section, we calculate the aver
stress

s̄ i j 5
1

VV8
E

V8
s i j ~x!dx (31)

inside several polygonal inhomogeneitiesV8 ~volumeVV8! by the
method proposed by the authors and the boundary elem
method~BEM!. Even though Eq.~30! does not hold for nonellip-
soidal inclusion in an exact sense, by comparing the two soluti
we will show that Eq.~30! for polygonal inclusions will still pro-
vide a good estimate for the composite stiffness, and becomin
better approximation as the number of polygon’s side increa
and the difference between the stiffness of the inhomogeneity
the matrix becomes small.

We consider an infinite bodyD with a regular polygonal inho-
mogeneityV8 as shown in Fig. 2. In this section, we compute t
average stress in triangular, square, pentagonal, and hexag
inhomogeneities inscribed to a circle of radiusa. All regular poly-
gons are centered at the originO of the Cartesian coordinate sys
tem (x1 , x2 , x3) and one of the vertices is located on thex1-axis.
Plane strain inx1–x2 plane is assumed. Using the method pr
posed by the authors~@18#!, the average stress inside the inhom
geneity is obtained as

s̄ i j 5$Ci jkl
m 1Ci jpq

m ~S̄pqmn2I pqmn!Bmnkl%«kl
` , (32)

whereCi jkl
m is the elastic stiffness tensor of the matrix,I i jkl is the

identity tensor,« i j
` is an uniform farfield strain, andBi jkl is a

tensor defined by

Bi jkl 5$~Ci jpq
m 2Ci jpq

f !S̄pqmn2Ci jmn
m %21~Cmnkl

f 2Cmnkl
m !.

(33)

In Eq. ~33!, Ci jkl
f is the stiffness tensor of the inhomogeneity.

To solve the above two-dimensional problem by BEM, a fin
size body is treated instead, but the width and height of the b
MAY 2001, Vol. 68 Õ 443



Fig. 2 A polygonal inhomogeneity in an infinite body sub-
jected to far-field strain „«11

` ,«12
` ,«22

`
…Ä„0,0,«0…
444 Õ Vol. 68, MAY 2001
Table 1 Comparison of averaged stress s̄22 Õs0 inside V8 cal-
culated by the present method and BEM with Ef ÕEm

Ä0.001– 1000 and n fÄnmÄ0.3. The result for square is aver-
aged over the rotation angle around the origin.
Fig. 3 Comparison of effective two-dimensional Young’s moduli calculated by present method and Jasiuk’s
method „†25‡…: „a… triangle, „b… square, „c… pentagon, „d… hexagon. n fÄnmÄ0.3 for present method and nmÄ0.3 for
Jasiuk’s method.
Transactions of the ASME
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are taken to be 100 times the radius of the circumcircle of
regular polygon where sharp corners are replaced by sufficie
small arcs. The radius of the arc is taken to be 0.01 times
radius of circumcircle of the regular polygons. This approxim
tion gives sufficient accuracy. The boundary element models h
totals of 234~triangle model!, 290 ~square model!, 378 ~pentagon
model!, 402~hexagon model! nodes for the two subregions whic
represent the inhomogeneity and surrounding infinite body. Fo
models, quadratic elements are used. For the evaluation o
average stress, we divide the polygon into triangles whose ver
are the center and two adjacent vertices. Then an integration
mula for two-dimensional simplexes by Hammer et al.@21# is
used. In each triangle, the number of integration points is 12.

Hereafter, we assume that the infinite body is subjected
farfield strain («11

` , «12
` , «22

` )5(0, 0,«0). Table 1 presents the
values of the average stresss̄22 obtained by the present metho
and BEM for the differentEf /Em ratio, whereEf , Em are the
Young’s modulus of the inhomogeneity and the matrix. The Po
son’s ratios of the inhomogeneity and the matrix are set ton f

5nm50.3. The average stress is normalized bys05«0Em(1
2nm)/(12nm22(nm)2), where s0 is the corresponding stres
component along thex2-direction for the given far-field strain
(«11

` , «12
` , «22

` )5(0, 0,«0). Our solutions and those obtained b
BEM disagree. However, it can be seen that the difference
becoming smaller as the number of polygon’s side increases.
difference is also becoming smaller as the difference betweeEf

and Em becomes small. Thus we can conclude that our met
will give a practically reasonable result for the effective stiffne
of a composite reinforced by polygonal inhomogeneities, es
cially for a composite having stiff matrix such as a metal mat
composite or a ceramic matrix composite. Here, we should c
ment that a square is not an isotropic shape~@18,23–25#!. To
obtain the average values over rotation angle from 0 deg, to
deg, we calculated the averages over 2~0 deg, 45 deg!, 4 ~0 deg,
22.5 deg, 45 deg, 67.5 deg!, 8 ~0 deg, 11.25 deg,̄ , 78.75 deg!
and 16~0 deg, 5.625 deg,̄ , 84.375 deg! positions. It was con-
firmed that all results are the same to 14 figures for the pre
method and 6 figures for BEM. Hence we concluded that we
adopt the average over two positions 0 deg and 45 deg as
average over rotation angle from 0 deg to 90 deg. In Table 1,
result for the square is obtained by averagings̄22 over two posi-
tions of rotation angle.

Next, we compare the effective two-dimensional Young
modulus (Ec) of a body with dilute distribution of polygona
holes or rigid inclusions calculated by Jasiuk’s method~@24,25#!
and that of a body with dilute distribution of very complia
(Ef /Em50.001) or very stiff (Ef /Em51000) inhomogeneities
calculated by the present method~@18#!:

Ci jkl
c 5Ci jkl

m 1 f ~Ci jmn
f 2Ci jmn

m !Amnkl
dil ,

Ai jkl
dil 5$I i jkl 1S̄i jmn~Cmnpq

m !21~Cpqkl
f 2Cpqkl

m !%21. (34)

The Poisson’s ratios are again set ton f5nm50.3. Figures 3~a!–
~d! show the results for low volume fraction (f <0.1) of holes,
rigid inclusions, and inhomogeneities. The difference between
two methods is small. In the calculation for square, we used
erageS̄i jkl over two positions of rotation angle 0 deg and 45 de

4 Numerical Results and Discussion for Polyhedral In-
clusions

Numerical results of the stress distribution, the elastic str
energy for a body containing a polyhedral inclusion and the eff
tive stiffness of a composite with polyhedral inhomogeneities
shown in this section. The Poisson’s ratio of the bodyn is as-
sumed to be 0.3 for the stress and the strain energy calcula
and an SiC particle-reinforced Al matrix composite is chosen
the effective stiffness calculation. Material properties of SiC a
Journal of Applied Mechanics
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Al are shown in Table 2. We assume a polyhedral inclusion c
tered at the originO of the Cartesian coordinate system. The fi
regular polyhedra shown in Fig. 4 are considered for the stress
the effective stiffness calculations. Furthermore, three inclusi
of icosidodeca family shown in Fig. 5 are additionally consider

Fig. 4 Regular polyhedral inclusions

Fig. 5 Polyhedral inclusions belonging to icosidodeca family

Table 2 Material properties of SiC particle and Al matrix
MAY 2001, Vol. 68 Õ 445
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Fig. 6 Variation of normalized stress field in a polyhedral inclusion with a dilatational eigenstrain „« i j*
Ä«0d i j … along a line from the center through a vertex: „a… sL : normal stress on a plane normal to the line. „b…
sT : normal stress on a plane parallel to the line. dÄ1 indicates the position of the vertex.
d
-
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y
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for the strain energy calculation. First, we examined the str
distribution for the cubic inclusion examined by Chiu@6# and
confirmed that our results coincide with his.

Figures 6~a! and ~b! show the distributions of the normalize
stressessL /(E«0) and sT /(E«0), respectively, inside and out
side inclusion along a line from the center through a vertex fo
dilatational eigenstrain (« i j* 5«0d i j ). sL and sT are the normal
ol. 68, MAY 2001
ess

r a

stresses on a plane normal and parallel to the line, respectiv
andE is the Young’s modulus. Horizontal axis is normalized b
the distance from the center to a vertex, henced51 indicates the
position of the vertex. These figures show that the stresses
the logarithmic singularity at vertices of the polyhedra. Figur
7~a! and ~b! show the distributions of the stresses alongx1-axis
for a uniaxial eigenstrain~«11* 5«0 and other components ar
Fig. 7 Variation of normalized stress field in polyhedral inclusions with a uniaxial eigenstrain along x 1-axis,
«11* Ä«0 : „a… sLÄs11 . „b… sT : normal stress on a plane parallel to the x 1-axis. dÄ1 indicates the position of the
vertex.
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zero!. In this case, we take one vertex of the regular polyhedra
thex1-axis, sosL andsT are invariant for the rotation around th
x1-axis. Similar to the case of dilatational eigenstrain, it is no
here that the stresses have the logarithmic singularity at the
tex. However, the values of stresses at the center do not coin
with the sphere except for the dodecahedron and the icosahe
It can be seen that the stress distributions inside the inclusion
to be flat~or constant! as the shape of the inclusion approaches
the sphere through Figs. 6 and 7.

To obtain the strain energy, we have to evaluate the avera
Eshelby’s tensor, Eq.~29! numerically. For this purpose, we d
vide the polyhedron into three-dimensional simplexes whose
tices are denoted by a vertex, a midedge, a midface, and the c
O. Then a numerical integration formula by Hammer et al.@21#
are used. The number of the integration points inside a simple
15. Table 3 shows normalized strain energyW̄* 5W* /(«0

2EVV)
for an infinite body with a polyhedral inclusion with a dilatation
eigenstrain (« i j* 5«0d i j ) and a uniaxial eigenstrain~«11* 5«0 and
other components are zero!. The strain energies for all the poly

Table 3 Normalized strain energy W̄*ÄW* Õ„«0
2EVV… in an in-

finite body with a polyhedral inclusion for a dilatational eigen-
strain „« i j*Ä«0d i j … and a uniaxial eigenstrain along x 1-axis „«11*
Ä«0…
Journal of Applied Mechanics
on
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cide
ron.
end
to

ged
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nter

x is

l

-

hedron with a dilatational eigenstrain are the same as the sph
On the other hand, the strain energies for the uniaxial eigenst
are different but those for the dodecahedron, icosahedron, t
cated icosahedron, truncated dodecahedron, and icosidode
dron are the same as the sphere’s. We note that they belong t
icosidodeca family which has the highly symmetrical structu
This finding is seems to be relevant to the fact that the value
stress at the center of these polyhedra are the same as those
sphere~see Figs. 7~a! and ~b! for the dodecahedron and icosah
dron!. This is interesting because the famousC60: Buckminster-
fullerene has the truncated icosahedral structure~@26#! and most
quasi-crystals have icosahedral phase~@27#!.

Finally, we calculate stiffness of an SiC particle-reinforced
composite by the Mori-Tanaka method~@18,28#!:

Ci jkl
c 5Ci jkl

m 1 f ~Ci jmn
f 2Ci jmn

m !Amnkl
MT ,

Ai jkl
MT5Ai jmn

dil $~12 f !I mnkl1 f Amnkl
dil %. (35)

As seen in Table 3, strain energies of the polyhedra belongin
the icosidodeca family are the same as the sphere’s. On the o
hand, strain energies of tetrahedron, hexahedron~cube!, and octa-
hedron vary with their orientation~the numerical results are omit
ted!. This means that polyhedra belonging to the icosidodeca f
ily are the isotropic shapes and tetrahedron, hexahedron~cube!,
and octahedron are the anisotropic shapes. Therefore, for t
three shapes, averaging over the orientation is needed to calc
the isotropic stiffness. However, in the case of polyhedra, it
difficult to calculate the average values. Thus, in this example,
assume that all inhomogeneities’ orientations are the same
take one vertex of the regular polyhedra on thex1-axis. So result-
ing stiffness tensors have weak anisotropy in the case of tetr
dral, hexahedral~cubic!, and octahedral inhomogeneities. We co
jecture that if we can averageS̄i jkl over orientation of the above
three polyhedra, the orientation-dependent part ofS̄i jkl will be
canceled like the two-dimensional polygon case~@29#! and we
will obtain the sameS̄i jkl as a sphere. Figures 8~a! and ~b! show
the variation of the stiffnessC1111

c andC1212
c versus volume frac-

tion of the particlef. It can be seen that the effect of particle sha
is comparatively small, thus practically, use of a sphere for p
Fig. 8 Effective stiffness of SiC-Al composite versus volume fraction of inhomogeneities f : „a… C1111
c , „b… C1212

c
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r
diction of the stiffness of a composite with regular polyhed
inhomogeneities may be justified as a good approximation.

Appendix

Integral Formulas.

E 1

Aax21bx1c
dx5

1

Aa
logu2ax1b12Aa~ax21bx1c!u

~a.0!, (A1)

E 1

~ax21bx1c!3/2 dx5
2~2ax1b!

~4ac2b2!Aax21bx1c
, (A2)

E x

~ax21bx1c!3/2 dx5
2~bx12c!

~b224ac!Aax21bx1c
, (A3)

E x2

~ax21bx1c!3/2 dx5
~2b224ac!x12bc

a~4ac2b2!Aax21bx1c

1
1

aAa
logu2ax1b

12Aa~ax21bx1c!u ~a.0!,

(A4)

E x

~x21p2!Aax21c
dx

55
1

pAc2ap2
tan21S x

p
Ac2ap2

ax21c D ~c.ap2!,

1

2pAap22c
logUxAap22c1pAax21c

xAap22c2pAax21c
U ~c,ap2!

,

(A5)
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alE x

~x21p2!Aax21c
dx

55
1

Aap22c
tan21Aax21c

ap22c
~c,ap2!,

1

2Ac2ap2
logUAax21c1Ac2ap2

Aax21c2Ac2ap2U ~c.ap2!

,

(A6)

Explicit Expression of the Eshelby’s Tensor.

Si jmn5
1

2
~Dimn, j1D jmn,i ! (A7)

In Eq. ~A7!,

Dimn, j5
Cklmn

16pm~12n! (I 51

N

nl
IF ~324n!d ik

]I 1
I

]xj
1

]I 2
l ~ ik !

]xj
G

5
Cklmn

16pm~12n! (I 51

N

(
J51

MI

nl
IF ~324n!d ikH s1

]I 1
IJ

]xj

1s18
]~ I 1

IJ!8

]xj
J 1H s2

]I 2
IJ~ ik !

]xj
1s28

]~ I 2
IJ~ ik !!8

]xj
J G , (A8)

where]I 1
IJ/]xj is
]I 1
IJ

]xj
5uaJ

I u , j logH ubJ
I u1ugJ

I u
urJ

I u J 1uaJ
I u H ubJ

I u , j1ugJ
I u , j

ubJ
I u1ugJ

I u
2

urJ
I u , j

urJ
I u J 1urI u , jFIJ1urI uFIJ, j , (A9)

FIJ, j5
]FIJ

]xj
5 f 1

IJ~ j !1 f 2
IJ~ j !1 f 3

IJ~ j ! , (A10)

f 1
IJ~ j !5

~ ubJ
I u , j ugJ

I u1ubJ
I uugJ

I u , j !urI uuaJ
I u2ubJ

I uugJ
I u~ urI u , j uaJ

I u1urI uuaJ
I u , j !

urI u2uaJ
I u21ubJ

I u2ugJ
I u2 ,

f 2
IJ~ j !52

~ ubJ
I u , j uaJ

I u1ubJ
I uuaJ

I u , j !urI uugJ
I u1ubJ

I uuaJ
I u~ urI u , j ugJ

I u1urI uugJ
I u , j !

urI u2ugJ
I u21ubJ

I u2uaJ
I u2 , (A11)

f 3
IJ~ j !52

ubJ
I u , j uaJ

I u2ubJ
I uuaJ

I u , j

ucJ
I u2 ,

and]I 2
IJ( ik)/]xj is given by

]I 2
IJ~ ik !

]xj
5

]

]xj
~ I 2

IJ~ ik !!11
]

]xj
~ I 2

IJ~ ik !!21
]

]xj
~ I 2

IJ~ ik !!3 , (A12)
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IJ( ik))8/]xj are obtained from Eqs.~A9!–
~A15! by replacing the vectors related withTIJ by those related
with TIJ8 .
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1uaJ
I u ,i~dk j2urI u ,kurI u , j !%uaJ

I uF2
1

ubJ
I u

1
uaJ

I u
ubJ

I u2 logH ubJ
I u1ucJ

I u
uaJ

I u J G2$uaJ
I u ,i ucJ

I u ,k1uaJ
I u ,kucJ

I u ,i%uaJ
I uucJ

I u

3F ~ urI u , j2uaJ
I u , j !ubJ

I u1~ uaJ
I u , j ubJ

I u1uaJ
I uubJ

I u , j !

uaJ
I uubJ

I u2 1
uaJ

I u , j ubJ
I u22uaJ

I uubJ
I u , j

ubJ
I u3 logH ubJ

I u1ucJ
I u

uaJ
I u J 1

uaJ
I u

ubJ
I u2 H ubJ

I u , j1ucJ
I u , j

ubJ
I u1ucJ

I u
2U aJ

I u , j

uaJ
I u J

1
urI u , j

ubJ
I u2 tan21

ubJ
I u

uaJ
I u G2$uaJ

I u ,kurI u ,i1uaJ
I u ,i ur I u ,k%urI u , jF logH ubJ

I u1ucJ
I u

uaJ
I u J 2

ucJ
I u

ubJ
I u

log
2ucJ

I u
urI u

2
uaJ

I u
ubJ

I u
log

urI u
2uaJ

I uG
2$uaJ

I u ,i urI u ,k1uaJ
I u ,kurI u ,i%F ucJ

I u
uaJ

I u
21G uaJ

I uurI u , j

ubJ
I u

,

]

]xj
~ I 3

IJ~ ik !!2→$~d i j 2urI u ,i urI u , j !ucJ
I u ,k1ucJ

I u ,i~dk j2urI u ,kurI u , j !%F2
uaJ

I u
bJ

I 1
uaJ

I uucJ
I u

ubJ
I u2 logH ubJ

I u1ucJ
I u

uaJ
I u J G1ucJ

I u ,i ucJ
I u ,kucJ

I u2

F2
$uaJ

I u , j ucJ
I u1uaJ

I u~ ucJ
I u , j2urI u , j !%ubJ

I u2uaJ
I u$ubJ

I u , j ucJ
I u22ubJ

I uucJ
I u , j%

ubJ
I u2ucJ

I u2 1
uaJ

I u , j ubJ
I u22uaJ

I uubJ
I u , j

ubJ
I u3 logH ubJ

I u1ucJ
I u

uaJ
I u J

1
uaJ

I u
ubJ

I u2 H ubJ
I u , j1ucJ

I u , j

ubJ
I u1ucJ

I u
2

uaJ
I u , j

uaJ
I u J 2

urI u , j

ubJ
I u2 tan21

ubJ
I u

uaJ
I u G2$ucJ

I u ,kurI u ,i1ucJ
I u ,i urI u ,k%urI u , jF uaJ

I u
ubJ

I u
log

2ucJ
I u

urI u
1

ucJ
I u

ubJ
I u

log
urI u

2uaJ
I uG

1$ucJ
I u ,i urI u ,k1ucJ

I u ,kurI u ,i%@ uaJ
I u2ucJ

I u#
urI u , j

ubJ
I u

1urI u ,i urI u , j urI u ,k tan21
ubJ

I u
uaJ

I u
. (A23)
~v! When urJ
I u→0,

I 1
IJ→0,

I 2
IJ~ ik !→0, (A24)

]I 1
IJ

]xj
→uaJ

I u , j F log
2ubJ

I u
urJ

I u
21G2urI u , ju,

]

]xj
~ I 2

IJ~ ik !!1→uaJ
I u ,i uaJ

I u , j uaJ
I u ,k~12cos2 u!2uaJ

I u ,i uaJ
I u , j urI u ,k

3~u2cosu sinu!,

]

]xj
~ I 2

IJ~ ik !!2→2~ uaJ
I u ,i ubJ

I u ,k1uaJ
I u ,kubJ

I u ,i !~ urI u , j2uaJ
I u , j sinu

2urI u , j cosu!2~ uaJ
I u ,kurI u ,i1uaJ

I u ,i urI u ,k!

3@ urI u , j log~cosu!2sinu~ urI u , j sinu

2uaJ
I u , j cosu!#,
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]

]xj
~ I 2

IJ~ ik !!3→ubJ
I u ,i ubJ

I u ,kF uaJ
I u , j S log

2ubJ
I u

urJ
I u

22D
2urI u , juG2~ ubJ

I u ,kurI u ,i1ubJ
I u ,i urI u ,k!

3F urI u , j S log
cosu

11sinu
11D2$uaJ

I u , j~11sinu!

1urI u , j cosu%
cosu

11sinuG1urI u ,i urI u , j urI u ,ku

1urI u ,i urI u ,k cosu~ uaJ
I u , j cosu2urI u , j sinu!,

(A25)

whereu5tan21uaJ
I u/urI u

~vi! When ugJ
I u→0,

I 1
IJ→0,

I 2
IJ~ ik !→0. (A26)

Limiting solutions for]I 1
IJ/]xj and]I 2

IJ( ik)/]xj are obtained by
replacinguaJ

I u, ubJ
I u, ucJ

I u, urI u, urJ
I u, ugJ

I u, urJ
I u , j , ucJ

I u , j , andugJ
I u , j in

Eq. ~A13! to ~A15! by uaJ
I u8, ubJ

I u8, ucJ
I u8, urI u8, urJ

I u8, ugJ
I u8, urJ

I u ,8 ,
ucJ

I u , j8 , andugJ
I u , j8 shown below.

uaJ
I u85sinf cosw,
MAY 2001, Vol. 68 Õ 451



d

u

i
t

eld

alf
.

ial

yer
.,

in-
,’’

d by

in-

in-

he-

st.,

by

lu-

of

a,’’

ra-

lu-
l.

s

n-

f

E.,

ase
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ubJ
I u85sinf sinw,

ucJ
I u85sinf,

urI u85cosf,

urJ
I u85Acos2 f1sin2 f cos2 w,

ugJ
I u851,

urJ
I u , j8 5

~ urI u , j cosf1uaJ
I u , jsinf cosw!

Acos2 f1sin2 f cos2 w
,

ucJ
I u , j8 5uaJ

I u , j cosw1ubJ
I u , j sinw,

ugJ
I u , j8 5urI u , j cosf1uaJ

I u , j sinf cosw1ubJ
I u , j sinf sinw.

(A27)

In equations~A25!, f5tan21 ucJ
I u/urI u, w5tan21 ubJ

I u/uaJ
I u.

In Eqs. ~A9!, ~A13!, ~A14!, ~A15!, ~A17!, ~A19!, ~A22!, ~A23!,
~A25!, and~A27!, derivatives are given by

uaJ
I u ,i52~aJ

I ! i /uaJ
I u,

uBJ
I u ,i52~bJ

I ! i /ubJ
I u,

ucJ
I u ,i52~cJ

I ! i /ucJ
I u,

urI u ,i52~r I ! i /urI u,

urJ
I u ,i52~rJ

I ! i /urJ
I u,

ugJ
I u ,i52~gJ

I ! i /ugJ
I u, (A28)

~aJ
I ! i , j52uaJ

I u ,i uaJ
I u , j ,

~cJ
I ! i , j52~d i j 2urI u ,i urI u , j !,

~r I ! i , j52urI u ,i urI u , j . (A29)
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1 Introduction
Investigations of the dynamic stability of elastic systems, su

as the transverse vibration of columns and flat plates under
domly fluctuating axial loading or end displacement, frequen
lead to the study of the bifurcation behavior of the solution o
nondimensional second-order differential equation of the form

q̈12bq̇2@g01sj~ t !#q1dq350, (1)

whereq is the generalized coordinate,b the damping constant,g0
ands loading and fluctuation parameters,d a constant depending
on the geometry of the system, andj(t) a unit Gaussian white
noise process with zero mean. In the absence of stochastic
tuation, i.e., whens50, as the loading parameterg0 is increased
from negative to positive values, the system undergoes a pitch
bifurcation from the trivial equilibrium configuration into one o
the two symmetric nontrivial equilibrium configurations.

It is of practical interest to study the shift in the point of bifu
cation as a result of the small stochastic perturbation to the
plied load or end displacement. This can be done by examin
the stability of the trivial solution of the linearized equation

q̈12bq̇2@g01sj~ t !#q50. (2)

The Lyapunov exponents, which characterize the average e
nential rate of growth of the solutions of system~2! for t large, are
defined as

lq5 lim
t→`

1

t
logiq~ t !i , (3)

where q(t)5$q(t),q̇(t)%T and i•i denotes a suitable norm. Th
trivial solution is stable with probability one if the large
Lyapunov exponent is negative, whereas it is unstable with pr
ability one if the largest Lyapunov exponent is positive. A d
namical orD-bifurcation from the trivial solution occurs when th
largest Lyapunov exponent vanishes. The corresponding valu
g0 gives the point ofD-bifurcation. This concept of stochasti
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MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, No
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Mechanical Engineering, University of Houston, Houston, TX 77204-4792, and
be accepted until four months after final publication of the paper itself in the AS
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bifurcation is in accord with the concept of bifurcation of th
corresponding deterministic system when the stochastic pertu
tion is set to zero.

A different criterion has been adopted by many physicists~@1#!
based on the change in the form of the stationary probability d
sity function of the system response. A stochastic phenomenol
cal or P-bifurcation is said to occur when this probability densi
function undergoes a qualitative change from a unimodal t
bimodal or multimodal density function. The value of the bifu
cation parameter at which such a transition in the probability d
sity function occurs has been shown~@2#! to be related to the
nontrivial zero of thepth moment Lyapunov exponent of the so
lution of system~2! defined as~@3#!

Lq~p!5 lim
t→`

1

t
log E@ iq~ t !ip#, (4)

whereE@•# denotes expected value. The value ofLq(p) charac-
terizes thepth moment stability of system~2!. The pth moment
Lyapunov exponentLq(p) is a convex analytic function inp with
Lq(0)50, Lq8(0)5the largest Lyapunov exponentlq . If p
5d(g0)Þ0 is the nontrivial zero ofLq(p), i.e., Lq(d)50, then
the valueg 0

p at whichP-bifurcation occurs satisfies the conditio
d(g 0

p)52d, where d52 is the dimension of system~2!. The
valued is called the stability index.

The concepts of using the Lyapunov exponents and mom
Lyapunov exponents in the study of bifurcations in stochastica
perturbed dynamical systems were presented in~@4#!. To study the
dynamical effect of stochastic perturbation in the bifurcation
system~1!, it is important to determine the Lyapunov exponen
and moment Lyapunov exponents of the linear system~2!.

When ug0u is finite andg0,0, by applying the time scalingt
5A2g0t, Eq. ~2! can be simplified as

q912b̄q81@11s̄h~t!#q50 (5)

whereb̄5b(2g0)21/2, s̄5s(2g0)23/4, h~t! is a unit Gaussian
white noise process, and a prime denotes differentiation with
spect tot. The Lyapunov exponentl̄q and the moment Lyapunov
exponentL̄q(p) of system~5! are related to those of~2!, lq and
Lq(p), by

lq5A2g0 l̄q , Lq~p!5A2g0 L̄q~p!.
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The Lyapunov exponents and moment Lyapunov exponent
system ~5! have been studied by many researchers, see
~@5,6#!.

When ug0u is small, the above time scaling cannot be appl
and the Lyapunov exponents and moment Lyapunov expon
obtained for system~5! are not applicable to system~2!. However,
this case is of particular importance in the studies of the effec
small stochastic perturbation in the dynamical bifurcations, wh
is expected to occur in the vicinity of the static pitchfork bifurc
tion, i.e.,g050.

In this paper, the Lyapunov exponents and moment Lyapu
exponents of system~2! are studied for the case thatug0u is small.
Note that the nonlinear term in Eq.~1! is not used in the remaining
of this paper; it only serves as a motivational example. T
Lyapunov exponents and moment Lyapunov exponents obta
are for the linear system~2!.

2 Formulation
For the linear system~2! under stochastic perturbation, th

damping term can be removed by applying the transformatioq
5xe2bt, which results in

ẍ1@g1sj~ t !#x50 (6)

whereg52g02b2. Letting x15x, x25 ẋ, Eq. ~6! may be writ-
ten in the form of state equations

ẋ15x2 ,
(7)

ẋ252gx12sx1j~ t !.

Following Ariaratnam and Xie@7# and introducing the scaling
x15y1 , x25sa1y2 , g5sa2ĝ, Eqs.~7! become

ẏ15sa1y2 ,

ẏ252sa22a1ĝy12s12a1y1j~ t !.

For the right-hand sides of both equations to have compar
influence, it is required thatsa15sa22a15«, s12a15«1/2, where
« is a small quantity, which leads toa152/3, a254/3, and«
5s2/3. Hence

dy15«y2 dt,
(8)

dy252«ĝy1 dt2«1/2y1 dW,

whereW(t) is the unit Wiener process.
It is easy to show that the Lyapunov exponents and the mom

Lyapunov exponents of systems~2!, ~6!, and~8! are related as

lq52b1lx , Lq~p!52pb1Lx~p!,

lx5ly , Lx~p!5Ly~p!,

hence

lq52b1ly , Lq~p!52pb1Ly~p!. (9)

It is well known that, to unfold a nilpotent singularity, tw
unfolding parameters are needed. In this problem, the dam
constantb and the loading parameterg0 are the unfolding param
eters. From the scaling, it is seen thatg is of the order ofs4/3 or
«2. From Eqs.~9! and ~23!, b is of the order ofs2/3 or «. Since
g52g02b2, g0 is of the order ofs4/3 or «2.

In general, consider the following two-dimensional Itoˆ’s linear
stochastic system

dX5A0X dt1(
i 51

m

A iX dWi , (10)

whereX5$X1 ,X2%
T, A i , i 50,1, . . . ,m, are 232 matrices, and

Wi , i 51,2, . . . ,m, are independent unit Wiener processes. Ap
the Khasminskii transformation~@8#!
454 Õ Vol. 68, MAY 2001
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X1

iXi
5cosw,

X2

iXi
5sinw,

whereiXi is the Euclidean norm ofX, and denote

s~w!5 H cosw
sinw J , ŝ~w!5 H sinw

2coswJ .

It is well known ~@3,9#! that the moment Lyapunov exponen
LX(p) of system~10! is the principal simple eigenvalue of th
infinitesimal operatorLp

Lpf ~w,p!5LX~p! f ~w,p!,

where f (w,p) is a p-periodic function and

A~w!5(
i 51

m

A is~w!sT~w!A i
T ,

a i~w!5sT~w!A is~w!, b i~w!5 ŝT~w!A is~w!, i 50,1, . . . ,m,

Q~w!5a0~w!1
1

2
tr@A~w!#2(

i 51

m

a i
2~w!,

k2~w!5(
i 51

m

b i
2~w!,

b~w,p!52b0~w!1~12p!(
i 51

m

a i~w!b i~w!,

c~w,p!5pQ~w!1
1

2
p2(

i 51

m

a i
2~w!,

Lpf ~w,p!5
1

2
k2~w! f 9~w,p!1b~w,p! f 8~w,p!1c~w,p! f ~w,p!,

in which the prime stands for differentiation with respect tow. For
system~8!,

X5 H y1

y2
J , A05F 0 «

2«ĝ 0G , A15F 0 0

2«1/2 0G , (11)

and it is easy to show that the moment Lyapunov exponentLy(p)
is the principal simple eigenvalue of the following system:

1

2
cos4 w f 9~w,p!1@p sinw cos3 w2F2~w!# f 8~w,p!

1pF1~w! f ~w,p!5L̂y~p! f ~w,p!, (12)

where

F1~w!5~12ĝ !sinw cosw1
1

2
cos2 w@cos2 w1~p21!sin2 w#,

F2~w!5sin2 w1ĝ cos2 w1sinw cos3 w,

and

Ly~p!5«L̂y~p!5s2/3L̂y~p!. (13)

The Lyapunov exponent is then given by

ly~p!5s2/3 lim
p→0

L̂y~p!

p
5s2/3

dL̂y~p!

dp
U

p50

. (14)

It is important to note that, although the small term« appears in
system~8!, it does not appear in the eigenvalue problem~12!.
Hence, the method of perturbation cannot be applied and the
ficulty in solving Eq.~12! analytically is increased significantly.

Furthermore, it has been shown~@10#! that the exact value of
system~6! whenb50 andg050, is lx50.28931s2/3. It is there-
fore expected that, in the vicinity ofg50, lx varies ass2/3. Equa-
tion ~14! certainly conforms with this expectation.
Transactions of the ASME
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The eigenvalue problem~12! for the pth moment Lyapunov
exponent can also be derived using Wedig’s approach~@11#!. In-
troduce the polar coordinates (a,w) as y15a cosw, y25a sinw,
and define apth normP5ap. The Itô equations forP andw can
be found by Itoˆ’s lemma

dP5«pPF1~w!dt2«1/2pP sinw coswdW,
(15)

dw52«F2~w!dt2«1/2 cos2 wdW.

Apply a linear stochastic transformation

S5T~w!P, P5T21~w!S, 2
1

2
p<w<

1

2
p.

The Itôequation for the newpth norm processS is given by, from
Itô’s lemma,

dS5«H 1

2
cos4 wT9~w!1@p sinw cos3 w2F2~w!#T8~w!

1pF1~w!T~w!J Pdt2«1/2@cos2 wT8~w!

1sinw coswT~w!#PdW. (16)

For bounded and nonsingular transformationT(w), both pro-
cessesP andS are expected to have the same stability behav
Therefore,T(w) is chosen so that the drift term of the Itoˆ differ-
ential Eq.~16! is independent of the phase processw, so that

dS5LSdt1«1/2Sg~w!dW. (17)

Comparing Eqs.~16! and ~17!, it is seen that such a transforma
tion T(w) is given by the following equation:

«H 1

2
cos4 wT9~w!1@p sinw cos3 w2F2~w!#T8~w!

1pF1~w!T~w!J 5LT~w!, 2
1

2
p<w<

1

2
p, (18)

which defines an eigenvalue problem for a second-order diffe
tial operator withT(w) as the unknown eigenfunction andL the
associated eigenvalue. From Eq.~17!, the eigenvalueL is seen to
be the Lyapunov exponent of thepth moment, i.e.,L5Ly(p).
Employing Eq.~13!, Eq. ~18! becomes Eq.~12!.

To solve Eq.~12!, consider a Fourier series expansion of t
eigenfunctionf (w,p) in the form

f ~w,p!5u01(
k51

`

~uk cos 2kw1vk sin 2kw!, (19)

since the coefficients in Eq.~12! are periodic with periodp. Sub-
stituting Eq.~19! into ~12!, equating the coefficients of like trigo
Journal of Applied Mechanics
or.

-

en-

e

nometric terms sin 2kw and cos 2kw, k50,1, . . . , results in a sys-
tem of infinitely many homogeneous linear equations for the
known coefficientsu0 , uk , vk , k51,2, . . . ,

3
a00

u 2L̂y a01
u a01

v a02
u a02

v
¯

a10
u a11

u 2L̂y a11
v a12

u a12
v

¯

b10
u b11

u b11
v 2L̂y b12

u b12
v

¯

a20
u a21

u a21
v a22

u 2L̂y a22
v

¯

b20
u b21

u b21
v b22

u b22
v 2L̂y ¯

] ] ] ] ] �

4 5
u0

u1

v1

u2

v2

]

6 50.

(20)

The existence of nontrivial solution requires that the determin
of the coefficient matrix be equal to zero, from which the eige
valueL̂y(p) can be obtained in principle.

In practice, only a finite number of terms is considered to obt
an approximate value for the eigenvalueL̂y(p). If, instead of Eq.
~19!, f (w,p) is taken as follows:

f ~w,p!5u01(
k51

K

~uk cos 2kw1vk sin 2kw!, (21)

system~20! is truncated to a set of 2K11 homogeneous linea
equations foru0 , u1 , v1 , . . . ,uK , vK . To obtain nontrivial so-
lutions, the determinant is set to zero to yield an algebraic eq
tion of degree 2K11 for L̂y

(K)(p)

a2K11
~K ! @L̂y

~K !#2K111a2K
~K !@L̂y

~K !#2K1¯1a1
~K !L̂y

~K !1a0
~K !50.

(22)

3 Lyapunov Exponents
Equation~22! can be employed to determine theKth-order ap-

proximation l̂y
(K) of the Lyapunov exponentl̂y easily. Since

L̂y(p)5O(p) asp→0, @L̂y(p)#k5o(p) for k.1. Dividing equa-
tion ~22! by p, taking the limitp→0, and using Eq.~14! results in

ly
~K !5s2/3l̂y

~K !5s2/3 lim
p→0

L̂y
~K !~p!

p

52s2/3 lim
p→0

a0
~K !

pa1
~K ! 5

N~K !

D ~K !

s2/3

16
. (23)

The above calculations can be easily manipulated by a symb
computation software such asMaple. Because of the limitation of
the space,ly

(2) and ly
(3) are given in the following equation an

N(10) andD (10) are presented in Appendix A,
ly
~2!5

s2/3

16

980711016ĝ13828ĝ22384ĝ3196ĝ4

231312544ĝ12248ĝ21960ĝ31144ĝ4 ,
(24)

ly
~3!5

s2/3

16

204505195464ĝ1134748ĝ2117920ĝ3112832ĝ42768ĝ51128ĝ6

62329194768ĝ190728ĝ2145248ĝ3117808ĝ413584ĝ51256ĝ6 .
tion,
e

are

of
To check the accuracy of the Lyapunov exponentsly
(K) ob-

tained,ly
(K)5l̂y

(K)s2/3 for the nilpotent system, i.e.,b50 andg0

50 in Eq.~6!, which are obtained by settingĝ50 in Eq.~23!, are
compared with the exact valuely50.28931s2/3 obtained in Ari-
aratnam and Xie@10#. The results are presented in Table 1.

From Table 1, it is noted that an increase in the orderK by 1
does not necessary increase the accuracy of the approxima
such as the cases forK54, 5, and 6. However, it is usually tru
that a better approximation can be obtained when more terms
retained in Eq.~21!.

For a near-nilpotent system, i.e.,b andg0 small in system~2!,
which is an important case in the study of the dynamic effect
MAY 2001, Vol. 68 Õ 455
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stochastic noise in the vicinity of the static pitchfork bifurcatio
Eq. ~23! gives an approximate result of the Lyapunov expon
ly . The Lyapunov exponentlq of system~2! can also be easily
determined using a numerical scheme proposed by Wedig@12#.
For the purpose of comparison, the Lyapunov exponents from
analytical approximate results~23! with K510 are shown in Figs.
1 along with those obtained from the numerical simulation. It c
be seen that both results agree extremely well.

The point of dynamic bifurcationg0
D as a function of the inten-

sity of noise perturbations can be easily obtained by solving th
equation

lq
~K !52b1

s2/3

16

N~K !~ ĝ !

D ~K !~ ĝ !
50, ĝ52

g01b2

s4/3 , (25)

Fig. 1 Lyapunov exponents

Table 1 Comparison of the Lyapunov exponents for the nilpo-
tent system

K 1 2 3 4 5

l̂y
(K) 0.375 0.26500 0.29531 0.28957 0.2880

% error 29.62 8.40 2.07 0.089 0.44

K 6 7 8 9 10

l̂y
(K) 0.28999 0.28918 0.28923 0.28937 0.2893

% error 0.24 0.043 0.026 0.020 0.0036
456 Õ Vol. 68, MAY 2001
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for g0 . The results are shown in Fig. 2 for different values
damping coefficientb andK510.

Using the numerical scheme proposed by Wedig@12#, for given
values ofb ands, the dynamic bifurcation pointg0

D satisfies the
condition lq50. The numerical results are shown in Figs. 3 t
gether with those obtained from Eq.~25! with K510. It can be
seen that both results agree quite well.

The numerical scheme proposed by Wedig@12# has difficulties
in determining the Lyapunov exponents in the vicinity ofg050
ands50. However, this region is smaller than the invalid regi
of the analytical results. In system~8!, the parameterĝ should be
a small quantity, i.e.,ug01b2us24/3,1. Hence, for the analytica
results to be valid, it is required thatb22s4/3,g0,b21s4/3 or
s.ug01b2u3/4. By comparing the analytical results with those
numerical simulation, it is observed thats or « does not have to
be small. In fact, the larger the value ofs, the smaller the value of
ĝ, leading to a better convergence of the result~23!.

In the static case,b50 ands50, the system undergoes a pitch
fork bifurcation wheng0 is increased from negative to positiv
values, or static bifurcation occurs atg050. For dynamic bifur-
cation, it is observed from Figs. 2 that, in the presence of dam
ing, the dynamic bifurcation is delayed under the perturbation
small intensity noise~g0

D is shifted to the right!, whereas the dy-
namic bifurcation is advanced~g0

D is shifted to the left! when the
intensity of the noise is large.

Fig. 2 Points of dynamic bifurcation
Transactions of the ASME
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4 Moment Lyapunov Exponents
When K50, i.e., when Eq.~19! is taken asf (w,p)5u0 , Eq.

~20! becomes

@a00
u 2L̂y~p!#50,

where a00
u 5p(p12)/16. Hence, the zeroth-order approximati

of the moment Lyapunov exponent is

L̂y
~0!~p!5a00

u 5
1

16
p~p12!, (26)

or

Lq
~0!~p!52pb1L̂y

~0!~p!s2/352pb1
1

16
p~p12!s2/3.

When K51, the Eq.~22! for L̂y
(1)(p) is a cubic equation, the

real root of which can be easily obtained. However, because
expression is quite complicated and the accuracy of the resu
not very high, it is not presented here.

In principle, theKth-order approximationL̂y
(K)(p) of the pth

moment Lyapunov exponentL̂y(p) can be obtained by solving
Eq. ~22!. However, the analytical solution of Eq.~22! is not pos-
sible for K.2; numerical solution has to be resorted to.

The eigenvalue problem~12! can be converted to a two-poin
boundary value problem~41! of Appendix B. Letting y1

5 f (w,p), y25 f 8(w,p), y35L̂y , Eq. ~12! can be written in the
following standard form:

Fig. 3 Points of dynamic bifurcation
Journal of Applied Mechanics
n

the
lt is

t

y185y2 ,

y285
2

cos4 w
$@F2~w!2p sinw cos3 w#y22pF1~w!y11y1y3%,

(27)

y3850.

Since f (w,p) is a p-periodic function, the domain ofw can be
chosen as21/2p<w<1/2p, as in Eq.~18!. When w→61/2p,
cosw→0 and sinw→61. Hence, at the boundary pointsw561/
2p, the eigenvalue problem~12! becomes

f 8S 6
1

2
p,pD52L̂y~p! f S 6

1

2
p,pD .

Hence the boundary conditions are

at w52
1

2
p: H y252y3y1 ,

y15c, (28)

at w5
1

2
p: H y252y3y1 ,

y15c, (29)

wherec is a constant to be determined. Note that there are f
boundary conditions in Eqs.~28! and ~29!, because the two con
ditions w(21/2p)5c andw(1/2p)5c are equivalent to the con
dition of periodicityw~21/2p!5w~1/2p!.

The method of relaxation can be applied to solve the two-po
boundary value problem~27!–~29!. The method of relaxation is
advantageous when studying the variation of the mom
Lyapunov exponent with the change of a parameter, since re
ation rewards a good initial guess with rapid convergence and
previous solution should be a good initial guess when the par
eter is changed only slightly. Following the procedure as
scribed in Appendix B, discretize the domain ofw into M grid
points wm521/2p1(m21)h, m51,2, . . . ,M , where h
5p/(M21). At the grid pointsw2 , w3 , . . . ,wM , the ordinary
differential Eqs.~27! are replaced by the finite difference equ
tions:

E1,m[y1,m2y1,m212hȳ2,m50,

E2,m[y2,m2y2,m212
2h

cos4 w̄m
$@F2~ w̄m!2p sinw̄m cos3 w̄m# ȳ2,m

2pF1~ w̄m!ȳ1,m1 ȳ1,mȳ3,m%, (30)

E3,m[y3,m2y3,m21 ,

wherew̄m51/2(wm1wm21), ȳi ,m51/2(yi ,m1yi ,m21), i 51, 2, 3.
At the first boundary pointw521/2p, there are two boundary
conditions. From Eqs.~28!,

E2,1[y2,11y1,1y3,150,
(31)

E3,1[y1,12c50.

At the second boundary pointw51/2p, there are also two bound
ary conditions. From Eqs.~29!,

E1,M11[y2,M1y1,My3,M50,
(32)

E2,M11[y1,M2c50.

The 3M correctionsDyi ,m , i 51, 2, 3,m51,2, . . . ,M , and the
undetermined constantc are given by the solution of the 3M11
linear algebraic Eqs. ~46!–~48! with n15n252. For m
52,3, . . . ,M , there are 3(M21) equations in~46!,

S1,1
m 521, S1,2

m 5S1,5
m 52

1

2
h, S1,3

m 5S1,6
m 50, S1,4

m 51,

S2,1
m 52

h

cos4 w̄m
@2pF1~ w̄m!1 ȳ3,m#5S2,4

m ,
MAY 2001, Vol. 68 Õ 457
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m 5212

h

cos4 w̄m
@F2~ w̄m!2p sinw̄m cos3 w̄m#5S2,5

m 22,

(33)

S2,3
m 52

h

cos4 w̄m
ȳ1,m5S2,6

m ,

S3,1
m 5S3,2

m 5S3,4
m 5S3,5

m 50, S3,3
m 521, S3,6

m 51.

For the first boundary point, there are two equations in~47!,

S2,1
1 5y3,1, S2,2

1 51, S2,3
1 5y1,1, (34)

S3,1
1 51, S3,2

1 50, S3,3
1 50, (35)

and for the second boundary point, there are two equation
~48!,

S1,1
M115y3,M , S1,2

M1151, S1,3
M115y1,M , (36)

S2,1
M1151, S2,2

M1150, S2,3
M1150. (37)

By using the zeroth approximationL̂y
(0)(p)5p(p12)/16 as an

initial guess, solving the linear algebraic Eqs.~46!–~48! for Dyi ,m

and updatingyi ,m iteratively, an approximate value ofL̂y(p)
5y3,1 is obtained. The moment Lyapunov exponentLq(p) is then
determined as

Lq~p!52pb1L̂y~p!s2/3. (38)

Numerical results of the moment Lyapunov exponentsLq(p) of
the nilpotent system, i.e., system~2! with b50 and g050, are

Fig. 4 Moment Lyapunov exponents of the nilpotent system
458 Õ Vol. 68, MAY 2001
in

plotted in Figs. 4 for various values ofs. As mentioned earlier,
the slope of the moment Lyapunov exponent curve atp50 is the
Lyapunov exponent. Straight lines with slopes being the ex
values of the Lyapunov exponent 0.28931s2/3 and passing
through the origin are plotted in Figs. 5 for the purpose of co
parison. It is clearly seen that these straight lines are tangent to
moment Lyapunov exponent curves at the origin, which ascert
the correctness of the moment Lyapunov exponents obtained.
merical results of the moment Lyapunov exponentsLq(p) for
b50.05,g050 are plotted in Figs. 6.

The stability indexp5d is the nontrivial zero of the momen
Lyapunov exponent. For the given values ofb, g0 , and s, the
stability indexd can be determined as a root-finding problem su
that Lq(d)50. Numerical results of the stability indexd are
shown in Figs. 7 forg050 and various values ofb ands.

For given values ofb and s, the pointg0
P of P-bifurcation is

given by the conditionLq(d)50, d(g0
P)52d, whered52 is the

dimension of system~2!. Baxendale and Stroock@13# found a
simple expression for the determination ofL(2d). Consider the
Stratonovich stochastic differential equation

dX5A0X dt1(
i 51

m

A iX+dWi , (39)

in Rd, which satisfies a Lie algebra condition as specified in B
endale and Stroock@13#. Then

LX~2d!52tr~A0!1
1

2 (
i 51

m

@ tr~A i !#
2. (40)

Fig. 5 Moment Lyapunov exponents of the nilpotent system
Transactions of the ASME
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For system~8!, the Stratonovich stochastic system and the
sociated Itoˆ stochastic system have the same form withA0 andA1
given by Eq.~11!. Using Eq.~40!, Ly(22)50. SinceLq(p)5
2pb1Ly(p), henceLq(22)52b1Ly(22)52b.

For a damped system,Lq(22)52bÞ0, implying that
the point of P-bifurcation does not exist or there is noP-
bifurcation.

From Figs. 4 and 6, it is clearly seen that the numerical res
of the moment Lyapunov exponent for system~2! show that
Lq(22)52b.

5 Conclusions
In this paper, the Lyapunov exponents and moment Lyapu

exponents of a near-nilpotent system under stochastic p
metric excitation is studied. The system considered is the lin
ized system of a two-dimensional nonlinear system exhibitin
pitchfork bifurcation. When the system is in the vicinity of th
static bifurcation, the linearized system is near-nilpotent. The
fect of stochastic perturbation in the vicinity of static pitchfo
bifurcation is investigated. To obtain correct approximations
the Lyapunov exponent and moment Lyapunov exponents, a s
ing is introduced. However, because of this scaling, the eig
value problem for the moment Lyapunov exponent does not c
tain small terms so that the method of perturbation is
applicable.

To determine the moment Lyapunov exponent, which
given by the eigenvalue of an eigenvalue problem, a Fourier se

Fig. 6 Moment Lyapunov exponents
Journal of Applied Mechanics
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expansion of the eigenfunction is applied. Using a symbo
computation software, approximate analytical results of Lyapun
exponent can be easily obtained, which compare very well w
the numerical results. For the nilpotent system, t
approximate analytical Lyapunov exponents compare extre
ly well with the exact value of 0.28931s2/3. For given values
of b and s, the point of dynamic bifurcationg0

D are easily
determined.

On the other hand, the moment Lyapunov exponent can
determined by solving a polynomial algebraic equation. Howev
it is generally impossible to analytically solve an algebraic eq
tion when the degree is higher than four. Therefore it is imp
sible to obtain an approximation of the moment Lyapunov ex
nent higher than order one. A numerical scheme for
determination of the moment Lyapunov exponents is propos
The eigenvalue problem is converted to a two-point bound
value problem, which is solved by the method of relaxation. N
merical results of the moment Lyapunov exponent and stab
index are obtained.
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Fig. 7 Moment Lyapunov exponents
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Appendix A

Tenth-Order Approximation of the Lyapunov Exponent.

N~10!581416377891591473443661311050676513874530091718664ĝ11128161172329144118174988ĝ2

1775943278346166149798144ĝ31441968213856521221038752ĝ41194195296644753815586560ĝ5

172231202449082976835968ĝ6121951182909656335712256ĝ715732064023551329947648ĝ8

11247296360504790646784ĝ91234968185478776307712ĝ10136839160177431085056ĝ1114988807288488263680ĝ12

1550279102592057344ĝ13151575234755100672ĝ1413656803439083520ĝ151216194152660992ĝ16

16831118221312ĝ171193257799680ĝ1821845493760ĝ19192274688ĝ20

D ~10!51758912144932091905362091430527257979085573916720ĝ1605036573044224113967592ĝ2

1570929893621448253376704ĝ31402252565131291276431632ĝ41221363544296183715627520ĝ5

198448212619925156738816ĝ6136063577755068433793024ĝ7111054685558940038197248ĝ8

12857986587819379523584ĝ91626937309831753793536ĝ101117006025940088389632ĝ11118525012437646409728ĝ12

12478260546110750720ĝ131277663756352356352ĝ14125451154846515200ĝ1511868615977271296ĝ16

1103932625944576ĝ1713781716606976ĝ18171051509760ĝ191507510784ĝ20
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Appendix B

Two-Point Boundary Value Problems. Consider the fol-
lowing two-point boundary value problem ofN dependent vari-
ables

dyi

dx
5gi~x;y1 ,y2 , . . . ,yN!, i 51,2, . . . ,N, (41)

with the n1 boundary conditions at pointx5a and n2 boundary
conditions at pointx5b:

at x5a: Bj~x;y1 ,y2 , . . . ,yN!50, j 51,2, . . . ,n1 ,

at x5b: Ck~x;y1 ,y2 , . . . ,yN!50, k51,2, . . . ,n2 ,

wheren11n25N, i.e., there are totalN boundary conditions.
There are two well-documented methods for solving the tw

point boundary values problem~41!, i.e., the shooting method an
the relaxation method~@14#!. For the completeness of the prese
tation of this paper, the relaxation method is briefly reviewed.

Discretize the domain of solution@a,b# into M grid pointsx1
5a,x2 , . . . ,xM21 ,xM5b. Using the backward difference

dyi

dxU
xm

'
yi ,m2yi ,m21

xm2xm21
,

the ordinary differential Eqs.~41! are replaced by approximat
finite difference equations on theM21 grid points
x2 ,x3 , . . . ,xM :

Ei ,m[yi ,m2yi ,m212~xk2xk21!gi~ x̄m ; ȳ1,m ,ȳ2,m , . . . ,ȳN,m!50,

i 51,2, . . . ,N, m52,3, . . . ,M , (42)

where x̄m51/2(xm1xm21), ȳi ,m51/2(yi ,m1yi ,m21), and the
boundary conditions are

Ej ,1[Bj~x1 ;y1,1,y2,1, . . . ,yN,1!50,
(43)

j 5N2n111,N2n112, . . . ,N,

Ej ,M11[Ck~xM ;y1,M ,y2,M , . . . ,yN,M !50, k51,2, . . . ,n2 ,
(44)
460 Õ Vol. 68, MAY 2001
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in which, for efficient computation, for the first boundary point th
last n1 components are taken as then1 nonzero components
whereas for the second boundary point the firstn2 components are
taken as then2 nonzero components.

The solution of the finite difference Eqs.~42!–~44! consists of a
set of valuesyi ,m of the N variablesyi , i 51,2, . . . ,N, at theM
grid pointsxm , m51,2, . . . ,M . The numerical solution require
an initial guess foryi ,m . The correctionsDyi ,m are determined
such thatyi ,m1Dyi ,m is an improved approximation to the solu
tion. The correctionsDyi ,m can be obtained by expanding th
finite difference Eqs.~42!–~44! in the first-order Taylor series
with respect to the small changesDyi ,m . At the grid points
x2 ,x3 , . . . ,xM , from Eq. ~42!,

Ei ,m~y1,m211Dy1,m21 , . . . ,yN,m211DyN,m21 ;y1,m

1Dy1,m , . . . ,yN,m1DyN,m!

'Ei ,m~y1,m21 , . . . ,yN,m21 ;y1,m , . . . ,yN,m!

1(
n51

N
]Ei ,m

]yn,m21
Dyn,m211(

n51

N
]Ei ,m

]yn,m
Dyn,m . (45)

For the updatedyi ,m1Dyi ,m to be a solution, the updated value o
Ei ,m must be zero, which leads to a set ofN(M21) equations for
Dyi ,m

(
n51

N

Si ,n
m Dyn,m211 (

n5N11

2N

Si ,n
m Dyn2N,m52Ei ,m , (46)

where

Si ,n
m 5

]Ei ,m

]yn,m21
, Si ,n1N

m 5
]Ei ,m

]yn,m
.

Similarly, at the first boundaryx15a, from Eq. ~43!, one hasn1
equations

(
n51

N

Sj ,n
1 Dyn,152Ej ,1 , j 5N2n111,N2n112, . . . ,N,

(47)

where
Transactions of the ASME
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Sj ,n
1 5

]Ej ,1

]yn,1
,

and at the second boundaryxM5b, from Eq. ~44!, one hasn2
equations

(
n51

N

Sk,n
M11Dyn,M52Ek,M11 , k51,2, . . . ,n2 , (48)

where

Sk,n
M115

]Ej ,M11

]yn,M
.

Equations~46!–~48! give total NM linear algebraic equation
for the correctionsDyi ,m , i 51,2, . . . ,N, m51,2, . . . ,M . By
iteratively solving forDyi ,m and updatingyi ,m , an approximate
solution of the two-point boundary value problem~41! is
obtained.
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1 Introduction
One of the central problems in classical mechanics is the de

mination of the equations of motion for constrained systems.
importance of the problem stems from the fact that what make
set of point masses and rigid bodies, a ‘‘system,’’ is the prese
of constraints. When physical constraints are imposed on an
constrained set of particles, forces of constraint are engend
which ensure the satisfaction of the constraints. The equation
motion developed to date for such constrained systems are b
on a principle first enunciated by D’Alembert, and later elabora
by Lagrange@1# in his Mechanique Analytiquewhich dates back
to 1787. Today the principle is referred to as D’Alembert’s pr
ciple, and it is the centerpiece of classical analytical dynamics
states, simply, that the total work done by the forces of constr
under virtual displacements is always zero. Constraints for wh
D’Alembert’s principle is applicable are referred to asideal
constraints.

Since its initial formulation by Lagrange more than 200 ye
ago, the problem of constrained motion has been vigorously
continuously worked on by numerous scientists including Vo
erra, Boltzmann, Hamel, Whittaker, and Synge, to name a few
1829, Gauss@2# provided a new general principle for the motio
of constrained mechanical systems in what is today referred t
Gauss’s Principle. About 100 years after Lagrange, Gibbs@3# and
Appell @4# independently discovered what are known today as
Gibbs-Appell equations of motion~@3,4#!. Pars~@5#, p. 202! refers
to the Gibbs-Appell equations as~@5#! ‘‘ . . . probably the most
comprehensive equations of motion so far discovered.’’ Dir
because of his interest in constrained systems that arise in q
tum mechanics, in a series of papers from 1951 to 1969 develo
an approach for determining the Lagrange multipliers for c
strained Hamiltonian systems~@6#!. More recently, Udwadia and
Kalaba @7# presented a simple, explicit, set of equations, ap
cable to general mechanical systems, with holonomic and n
holonomic constraints~@7,8#!.

However, all these alternative descriptions of the motion
constrained systems discovered so far, as well as the nume
articles that have subsequently dealt with them, rely

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, Ap
2, 2000; final revision, Oct. 9, 2000. Associate Editor: N. C. Perkins. Discussion
the paper should be addressed to the Editor, Professor Lewis T. Wheeler, Depa
of Mechanical Engineering, University of Houston, Houston, TX 77204-4792,
will be accepted until four months after final publication of the paper itself in
ASME JOURNAL OF APPLIED MECHANICS.
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D’Alembert’s principle, and each of these mathematical form
isms is equivalent to the other. Despite the continuous and vig
ous attention that this problem has received, the inclusion of s
ations where the physically generated forces of constraint i
mechanical systemdo not satisfy D’Alembert’s principle has so
far evaded Lagrangian dynamics. Yet, such forces of constr
are among those quite commonly found in nature. As stated
Goldstein~@9#, p. 17!, ‘‘This @total work done by forces of con
straint equal to zero# is no longer true if sliding friction is present
and we must exclude such systems from our@Lagrangian# formu-
lation’’ ~@9#!. And Pars in his treatise~@5#! on analytical dynamics
~1979, p. 14! writes, ‘‘There are in fact systems for which th
principle enunciated@D’Alembert’s principle# . . . does not hold.
But such systems will not be considered in this book.’’

In this paper we obtain the equations of motion for constrain
systems where the forces of constraint indeed do not sa
D’Alembert’s principle, and the sum total of the work done b
them under virtual displacements no longer need be zero.

The outline of the paper is as follows. In Section 2.1 we ge
eralize D’Alembert’s Principle to include constraint forces thatdo
work. This leads us to a deeper understanding of the specifica
of constraints in mechanical systems. This we discuss in Sec
2.2. Section 3 deals with the mathematical statement of the p
lem of constrained motion. Section 4 states and verifies the
plicit equation of motion for constrained systems with nonide
equality constraints. This equation leads to a new and fundame
principle of Lagrangian mechanics. The proof we give here
simpler than the one given in~@10#!, and it yields an important
geometrical interpretation that we discuss later. Section 5 give
example of a nonholonomically constrained system for which
constraints are nonideal. We show here the ease of applicabili
the explicit equation of motion obtained in the previous sect
and point out the insights it provides into understanding c
strained motion where the constraint forces do work. Lastly, S
tion 6 deals with the geometry of constrained motion and exhi
the simplicity and aesthetics with which Nature seems to oper

2 Generalization of D’Alembert’s Principle, Con-
straint Forces That Do Work, and Their Specification

2.1 Generalized D’Alembert’s Principle. Consider an un-
constrained system of particles, each particle having a cons
mass. By ‘‘unconstrained’’ we mean that the number of gene
ized coordinates,n, used to describe the configuration of the sy

il
on
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nd

he
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tem at any time,t, equals the number of degrees-of-freedom of
system. The Lagrangian equation of motion for such a system
be written in the form

M ~q,t !q̈5Q~q,q̇,t !, q~0!5q0 , q̇~0!5q̇0 (1)

where q(t) is the n-vector ~i.e., n by 1 vector! of generalized
coordinates,M is ann by n symmetric, positive-definite matrix,Q
is the ‘‘known’’ n-vector of impressed forces, and the dots refer
differentiation with respect to time. By ‘‘known,’’ we shall mea
that Q is a known function of its arguments. The acceleration,a,
of the unconstrained system at any timet is then given by the
relationa(q,q̇,t)5M 21(q,t)Q(q,q̇,t).

We shall assume that this system is subjected to a set om
5h1s consistent equality constraints of the form

w~q,t !50 (2)

and

c~q,q̇,t !50, (3)

wherew is anh-vector andc an s-vector. Furthermore, we sha
assume that the initial conditionsq0 and q̇0 satisfy these con-
straint equations at timet50. Assuming that Eqs.~2! and~3! are
sufficiently smooth, we differentiate Eq.~2! twice with respect to
time, and Eq.~3! once with respect to time, to obtain the equati

A~q,q̇,t !q̈5b~q,q̇,t !, (4)

where the matrixA is m by n, andb is a suitably definedm-vector
that results from carrying out the differentiations.

This set of constraint equations includes among others,
usual holonomic, nonholonomic, scleronomic, rheonomic, ca
static, and acatastatic varieties of constraints; combination
such constraints may also be permitted in Eq.~4!. It is important
to note that Eq.~4!, together with the initial conditions, is equiva
lent to Eqs.~2! and ~3!.

Consider now any instant of timet. When the equality con-
straints~Eqs.~2! and~3!! are imposed at that instant of time on th
unconstrained system, the motion of the unconstrained syste
in general, altered from what it would have been~at that instant of
time! in the absence of these constraints. We view this altera
in the motion of the unconstrained system as being caused b
additional set of forces, called the ‘‘forces of constraint,’’ acti
on the system at that instant of time. The equation of motion
the constrained system can then be expressed as

M ~q,t !q̈5Q~q,q̇,t !1Qc~q,q̇,t !, q~0!5q0 ,q̇~0!5q̇0 (5)

where the additional ‘‘constraint force’’n-vector, Qc(q,q̇,t),
arises by virtue of the constraints~2! and ~3! imposed on the
unconstrained system, which is described by Eq.~1!. Our aim is to
determineQc explicitly at timet in terms of the known quantities
M, Q, A, b, and information about the nonideal nature of th
constraint force, at timet. The latter comes from looking at th
physics of the system.

A virtual displacement~@8#! at timet is any nonzeron-vectorv
such thatA(q,q̇,t)v50. When the constraint forcen-vector does
no work under virtual displacementsv, we havevTQc50. This is
also referred to as D’Alembert’s principle, and it is the basis t
underliesall the different formalisms~@1–8#! hereto developed o
the equations of motion for mechanical systems subjected to
constraints described by Eqs.~2! and ~3!.

As demonstrated elsewhere~@7,8#!, one formalism that yields
an explicit equation describing the motion of such a constrain
system that abides by D’Alembert’s principle is given byMq̈
5Q1M1/2B1(b2Aa)5Q1Qc, where them by n matrix B
5AM21/2, andB1 stands for the Moore-Penrose generalized
verse~@11#! of the matrixB.

The central question that arises now is how to incorporate
the equation of motion,constraintsthat do do work under virtual
displacements, thereby bringing such constraints within the
grangian framework. Such nonideal constraint forces~for ex-
Journal of Applied Mechanics
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ample, sliding frictional forces! are in fact commonplace, an
have to date defied~@5,9#! inclusion in a simple way within the
general framework of analytical mechanics. The main reason
this difficulty is that three obstacles need to be simultaneou
surmounted. Firstly, we require the specification of such c
straint forces to be general enough so that they encompass p
lems of practical utility. Secondly, this specification must, in ord
to comply with physical observations, yield the accelerations
the constrained systemuniquelywhen using the accepted math
ware of analytical dynamics that has been developed over the
250 years. And lastly, when the constraint forces do no work,
must obtain the usual formalisms/equations that have thus
been obtained~e.g., by Lagrange, Gibbs, Appell, and Gauss!, and
are known to be of practical value.

Clearly, the work done by such a constraint force under virt
displacementsv at each instant of time needs to be known, a
must therefore be specified using some knownn-vectorC(q,q̇,t),
asvTC. Such an additional specification calls for a generalizat
of D’Alembert’s principle. We make this generalization in th
following manner:

For any virtual displacementv at time t, the constraint force
n-vector Qc at time t does a prescribed amount of work given

vTQc~ t !5vTC~q,q̇,t !. (6)

HereC(q,q̇,t) is a knownn-vector~i.e., a known function ofq, q̇,
andt! that needs to be specified and depends on the physics o
situation, as discussed in the example below. The work done
the constraint force in a virtual displacement may thus bepositive,
negative, or zero.

Relation~6! constitutes a new principle. This principle require
a description of the nature of the nonideal constraint force at t
t through a specification of the work it does during a virtual d
placement at that time. It generalizes D’Alembert’s principle, a
whenC[0, it reduces to it. In what follows we shall often refer
the constraint forcen-vector,Qc, as the constraint force.

2.2 Specification of Constraints. The equations of motion
provide a mathematical model for describing the motion of a
given physical mechanical system. The constraints specify
conditions that the generalized displacements and/or veloc
must satisfy at each instant of time as the motion of the sys
ensues under the action of the impressed forces. However
equations that state these conditions~Eqs. ~2! and ~3!! do not
completely specify the influence of these constraints on the mo
of the mechanical system. For short, we shall say that Eqs.~2! and
~3! do not completely specify the constraints on the mechan
system. This is what the generalized D’Alembert’s principle te
us.

There is a second part to the specification of the constraints,
this deals with thenature of the forces that are created by virtu
of the presence of the constraints. For this, the mechanician who
is modeling a specific mechanical system needs to study the
tem, possibly through experimentation, or otherwise. It is this
formation regarding the nonidealnatureof the force of constraint
that is encapsulated in the vectorC(q,q̇,t).

For example, consider a rigid block that is confined to move
a horizontal surfacez50. The specification of this relation~i.e.,
z50) doesnot constitute a complete specification of the co
straint. For, the presence of this constraint creates a const
force, and this force influences the motion of the block. So
adequately model the motion of the block on the surface,
needs to prescribe thenatureof this constraint force. Such a pre
scription is situation-specific and must be specified by the mec
nician either by experimentation with the system, by observat
by analogy with other systems~s!he has experience with, or b
some other means. For example, if the mechanician finds tha
surfaces in contact are rough~s!he may want to perform some
experiments to understand the nature of the forces created b
presence of this constraint. For a specific setup,~s!he may find
MAY 2001, Vol. 68 Õ 463
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that the work done by the constraint force under virtual displa
ments is proportional to the speed of the block, or perhaps to
square of its speed. Thus, depending on the situation at hanC

would then be specified as2a0@
q̇y

q̇x # or 2a0uq̇u@
q̇y

q̇x # respectively,

wherea0 may be a suitable constant whose value would also n
to be prescribed~perhaps by performing more experiments!. If,
further, the roughness of the surface changes from locatio
location, additional experimentation may be warranted, and a
ther refinement may be required in specifying the vectorC. Or, in
some other situation, C may perhaps be modeled a
2a0Qi

c(q,q̇,t) ~see Eq.~11! below!.
The invocation of D’Alembert’s principle when modeling a m

chanical system is then clear. D’Alembert’s principle specifies
nature of the constraint forces by simply settingC[0. It points to
the genius of Lagrange, for this specification accomplishes
following three things simultaneously.

1 It provides a condition that enables the accelerations of
constrained system to beuniquelydetermined, something desir
able when dealing with mechanical systems.

2 It specifies the nature of the constraint force through the
hoc specification ofC[0. This allows the mechanician to mod
a given mechanical systemwithout having to explicitly provide
further information~beyond that contained in the constraint Eq
~2! and/or ~3!! on the nature of the constraint forces that ar
created by the presence of the constraints. Most importantl
therefore obviates the need for situation-specific experimenta
observation, etc., that would have been otherwise necessa
specifyC when modeling a specific mechanical system.

3 This specification ofC[0 works well~or at least sufficiently
well! in many practical situations. This is perhaps the most
markable attribute of D’Alembert’s principle, and it points to th
genius of Lagrange.

All this becomes quite obvious, especially when modeling
problem of sliding friction where we immediately recognize th
the equation that describes the motion of the block on a horizo
surface must depend not only of the constraint equation,z50, but
indeed also on thenature of the constraint force engendered b
this constraint. And the latter depends on the physics of the
cific situation—the materials in contact, the surface roughnes
etc., and, of course, the intended use that the mechanician w
to put the model to.

But in analytical dynamics, we may have got so used to inv
ing D’Alembert’s principle, which obviates the explicit need
specify thenatureof the constraint force for any given mechanic
system by implicitly takingC[0, that it is tempting to think that
such a specification may be wholly unnecessary, even in gen
One perhaps may then get the impression that the equations
specify the constraints~Eqs. ~2! and/or~3!! are all that is neces
sary for properly posing the problem of constrained motion.This
indeed is not so. Specification of the nature of the constrai
forces isalways necessary. The generalized D’Alembert’s pri
ciple stated in Section 2.1 reminds us that, D’Alembert’s princi
provides, in fact,one particularspecification for the nature of th
constraint force. As in the case of sliding friction,C may not be
zero, and its explicit specification is necessary, in general. Su
specification, as mentioned before, is situation-specific and re
on the discernment and discretion of the mechanician who is m
eling the system.

Having explained what we mean by ‘‘specification of co
straints’’ for a given, constrained mechanical system at hand,
now need to explicitly determine its equation of motion. We st
by providing a statement of the problem of constrained motio

3 General Statement of the Problem of Constrained
Motion With Constraints That Do Work

In the notation that we have thus far developed, the problem
constrained motion can now be mathematically stated as follo
464 Õ Vol. 68, MAY 2001
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We require to find then-vectorQc(q,q̇,t) such that

1 M (q,t)q̈5Q(q,q̇,t)1Qc(q,q̇,t), with q(0)5q0 , q̇(0)
5q̇0 , andQ a known function ofq, q̇, andt; ~S1!

2 w(q,t)50, c(q,q̇,t)50, with w(q0,0)50; ḟ(q0,t)50, and
c(q0 ,q̇0,0)50; and, ~S2!

3 for all vectors v such that A(q,q̇,t)v50, we require
vTQc(t)5vTC(q,q̇,t), where then-vector C(q,q̇,t) is a
known function of its arguments. It specifies thenature of
the constraint forces. ~S3!

We remind the reader that item~S2! above is equivalent to Eq
~4!, and item~S3! is our generalized D’Alembert’s principle a
stated in Section 2.

Next we shall provide the explicit equation of motion th
emerges from the above mathematical statement, and furtherm
show that the accelerations provided by it are unique. From h
on, for clarity, we shall suppress the arguments of the vari
quantities.

4 Equation of Motion for Constrained System With
Nonideal Constraints

Result 1. An equation of motion of the constrained mechan
cal system that satisfies conditions~S1!–~S3! given in the previ-
ous section is explicitly given by

Mq̈5Q1Qc5Q1M1/2B1~b2Aa!1M1/2$I 2B1B%M 21/2C.
(7)

Proof. We shall prove that the constraint forcen-vector,Qc, given
by Eq. ~7! satisfies~S1!–~S3!.

~S1! The form of Eq.~7! shows that~S1! is satisfied.
~S2! Using q̈ from Eq. ~7! in Eq. ~4! gives

Aq̈5Aa1BB1~b2Aa!1B~ I 2B1B!M 21/2C

5Aa1BB1b2BB1BM1/2a

5Aa1BB1b2BM1/2a5BB1b, (8)

where we have used the relationsa5M 21Q, BB1B5B, andB
5AM21/2. Equation~4! can be expressed asB(M1/2q̈)5b, and
being consistent, implies~@8#! that BB1b5b. Using this in the
right-hand side in~11! proves that the accelerationq̈ satisfies Eq.
~4!. Hence~S2! is satisfied.

~S3! As seen from~7!, the constraint force,Qc, is given by

Qc5Qi
c1Qni

c 5M1/2B1~b2Aa!1M1/2$I 2B1B%M 21/2C.
(9)

SinceB5AM21/2, after settingv5M 21/2m, ~S3! is equivalent to
proving that

$muBm50,mÞ0%%⇒mTM 21/2Qc5mTM 21/2C. (10)

But Bm50 implies m1B150, and this~@8#! implies mTB150.
By Eq. ~9! we then havemTM 21/2Qc5mTB1(b2Aa)1mT$I
2B1B%M 21/2C5mTM 21/2C, which is the required result~S3!.h

Result 2. The equation of motion for the constrained syste
given by ~7! is unique.

Proof. Assume there exists another set of solution vectorq̈
1ë and Qc1R such that~S1!–~S3! are also satisfied. We mus
then haveM (q̈1ë)5Q1Qc1R, and by~5!, Më5R. Similarly,
A(q̈1ë)5b, and by Eq.~4!, Aë50. So then-vectorë qualifies as
a virtual displacement. Also, for all virtual displacementsv, we
must havevT(Qc1R)5vTC, so thatvTR50. ThusëTR5ëTMë
50, and henceë50 becauseM is positive definite. SinceR
5Më50, uniqueness follows. h

Thus Eq.~7! gives theuniqueequation of motion describing the
acceleration of a constrained mechanical system where the
straints are nonideal and the constraint forces do an amoun
work ~under the virtual displacement,v) given by vTC(q,q̇,t),
Transactions of the ASME
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with the n-vectorC being known. We explain the salient featur
of Eqs.~7! and ~9! in the following series of remarks.

Remark 1. The equation of motion,~7!, for the constrained
system does not contain any ‘‘multipliers’’ that need to be solv
for, as found in Lagrange’s equations that describe constra
motion with ideal constraints. h

Remark 2. No elimination of coordinates~or velocities! is done;
therefore, no set of coordinates~or velocities! is singled out for
special treatment, as in the Gibbs-Appell approach that is ap
cable for ideal constraints. The equation of motion is stated in
samecoordinates as those describing theunconstrainedsystem.
This makes it simple to directly assess the influence that the p
ence of the constraints have on the accelerations of the un
strained system. The next remarks deal with this. h

Remark 3. The total constraint forcen-vector,Qc, is given by
Qc5Qi

c1Qni
c , and it is seen to be made up oftwo additivecon-

tributions. The first member on the right-hand side of Eq.~9!
given by

Qi
c5M1/2B1~b2Aa! (11)

is the constraint forcethat would have been engendered were
the constraints ideal, andC[0. This contribution is ever presen
no matter whether the constraints are ideal or not.

The second member on the right-hand side of Eq.~9! given by

Qni
c 5M1/2$I 2B1B%M 21/2C (12)

gives theadditionalcontribution to the constraint force due to th
presence of nonideal constraints where the constraint forcedo
work under virtual displacements. This breakdown of the to
constraint forcen-vector explicitly shows the way in which
knowledge of the virtual work done by nonideal constraints en
the equation of motion of the constrained system. h

Remark 4. The contribution,Qi
c , to total force of constraint,

Qc, does no work under virtual displacements. For, as in the pr
of Result 1,vTQi

c5vTM1/2B1(b2Aa)5mTB1(b2Aa)50, for
all m such thatBm50. Hence, at each instant of timevTQc

5vTQni
c 5vTC. h

Remark 5. The forceC(q,q̇,t) provides a mathematical spec
fication of the nonideal nature of the constraints by informing
of the work done by the constraint forcen-vector,Qc, under vir-
tual displacements,v. Its specification depends on the physics
any given particular situation. It engenders a contribution,Qni

c , to
the total constraint force,Qc, but in general, this contribution is
such that,Qni

c ÞC. As seen from Eq.~12!, only at those instants o
time whenM 21/2C lies in the null space of the matrixB, does
Qni

c 5C.
Furthermore, at those instants of time whenM 21/2C is such that

it lies in the range space ofBT, thenQni
c 50. For then,M 21/2C

can be expressed asBTw for some suitable vectorw, and by Eq.
~12! we have, M 21/2Qni

c 5(I 2B1B)BTw5@BT2(B1B)TBT#w
5@BT2BT(BT)1BT#w50. Here, in the second and third equa
ties we use the properties of the Moore-Penrose inverse~@8#!. h

Remark 6. When the constraints are ideal,C[0, and the equa-
tion of motion given by Eq.~7! reverts to one that is well known
~@8#!, and has been shown to be equivalent to the usual Lagra
equations with multipliers, and to the Gibbs-Appell equatio
each of which is valid only for ideal constraints. h

5 Example
We illustrate the power of our result by considering a parti

of unit mass moving in an inertial Cartesian frame subjected
set of impressed forcesf x(x,y,z,t), f y(x,y,z,t), f z(x,y,z,t) act-
ing in thex, y, andz-directions, respectively. The particle is su
jected to the nonholonomic, constraintẏ5z2ẋ. The presence o
this nonideal constraint creates a force of constraint. For the
specific system at hand, we assume that this force of const
does work under virtual displacements given byvTQc
Journal of Applied Mechanics
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52vT(a0u
Tu)(u/uuu), where u is the velocity of the particle and

uuu51AuTu. Such a specification of thenatureof the constraint
force is left to the discretion of the mechanician who is model
the system, and it would depend on the physics of any partic
situation~see Section 2.2!. What is the equation of motion of this
nonholonomically constrained system in which the constra
create nonideal forces of constraint?

Using Eq.~7! we can write down an explicit equation for th
motion of the particle as follows.

Differentiating the constraint equationẏ5z2ẋ, we get

A5@2z2 1 0#, (13)

with

b52ẋżz. (14)

We note that it is theexistenceof the constraintẏ5z2ẋ that
createsthe force of constraint. This force of constraint is nonide
It does work under virtual displacements; its magnitude is prop
tional to the square of the speed of the particle, and it opposes
particle’s motion. It isnot an ‘‘impressed force’’ on the particle. I
would disappear in the absence of the constraint.

SinceM5I 3 , B5A. By Eq. ~11! we then obtain

Qi
c5@2z2 1 0#T

~2zẋż1z2f x2 f y!

~11z4!
, (15)

and, by Eq.~12!,

Qni
c 52a0F ẋ1z2ẏ

z2ẋ1z4ẏ
ż~11z4!

G ~ ẋ21 ẏ21 ż2!1/2

~11z4!
. (16)

The equation of motion of the nonholonomically constrain
system with nonideal constraints then becomes

F ẍ
ÿ
z̈
G5Q1Qi

c1Qni
c 5F f x

f y

f z

G1
~2zẋż1z2f x2 f y!

~11z4! F2z2

1
0

G
2a0F ẋ1z2ẏ

z2ẋ1z4ẏ
ż~11z4!

G ~ ẋ21 ẏ21 ż2!1/2

~11z4!
. (17)

The last member on the right-hand side of Eq.~17! exposes ex-
plicitly the contribution that the nonideal character of this no
holonomic constraint provides to the total constraint force,Qc.
The second member on the right informs us of the constraint fo
the particlewould be subjected to, were the nonholonomic co
straint ẏ5z2ẋ ideal. As stated in Remark 5, in this examp
Qni

c ÞC.
Note that whena050, the third member on the right of Eq.~17!

disappears, and we get the correct equation of motion that is v
for ideal constraints. Then, our equation becomes equivalen
Lagrange’s equation with multipliers and the Gibbs-Appell equ
tion, both of which are valid only for ideal constraints.

In Ref. ~@10#! we handle the sliding friction problem of a bea
running down a wire. As expected, Eq.~7! indeed yields the
proper equations of motion, which in this case are easy to ve
using Newtonian mechanics.

Holonomically constrained systems where the constraint for
are nonideal, as in sliding friction, may at times be handled by
Newtonian approach. However, to the best of our knowledge th
is no way to date to obtain the equations of motion for nonho
nomically constrained systems where the constraint forces
nonideal. Thus, seemingly simple problems like the one con
ered in this section have so far been beyond the compass o
Lagrangian formulation~see Refs.@5# and @9# for a more exten-
sive discussion!.
MAY 2001, Vol. 68 Õ 465



r

t

c
,

o
t

n
i

n

i

d
t

nt,
ice,
x

n of

rin-
n-
aint
this
this

u-
of

ual
sual

ct
ical
s of
-
-
the
re-

s

the

hen
-
e in
ion
e

e
the

d

that
x-
ed
he
gree
6 The Geometry of Constrained Motion
The geometrical simplicity of the equation of motion~7! devel-

oped herein can perhaps be best captured by using the ‘‘sca
accelerationsq̈s5M1/2q̈, as5M1/2a5M 21/2Q, q̈s

c5M 21/2Qc and
cs5M1/2(M 21C)5M 21/2C. The equation of motion~5! of the
constrained system can then be written in terms of these sc
accelerations as

q̈s~ t !5as~ t !1q̈s
c~ t !, (18)

and the problem of finding the equation of motion of the co
strained system then reduces, as pointed out by Gauss@2#, to
finding thedeviationDq̈s[q̈s

c(t)5q̈s(t)2as(t) of the scaled ac-
celeration of the constrained system,q̈s(t), from its known, un-
constrained, scaled acceleration,as(t). Equation~7!, then takes on
the simple form

q̈s5~ I 2B1B!~as1cs!1B1b, (19)

from which we can explicitly obtain the deviation,Dq̈s , as

Dq̈s5B1~b2Bas!1~ I 2B1B!cs . (20)

Let us denoteN5(I 2B1B), and T5B1B. To understand the
first member on the right-hand side of Eq.~20!, we note that the
extent to which the accelerationa of the unconstrained system
doesnot satisfy the constraint Eq.~4! is given by

e5b2Aa5b2Bas . (21)

Equations~19! and ~20! can now be rewritten as

q̈s5N~as1cs!1B1b (22)

and

Dq̈s5B1b2Tas1Ncs5B1e1Ncs . (23)

Noting the definition ofDq̈s , Eq. ~23! can be expressed alte
natively as

q̈2a5~M 21/2B1!e1~M 21/2NM21/2!C. (24)

This form of our result leads to the following new fundamen
principle of Lagrangian mechanics:

The motion of a discrete mechanical system subjected to
straints that are nonideal evolves, at each instant of time
such a way that the deviation of its accelerations from tho
it would have at that instant if there were no constraints
it, is made up of two components. The first componen
proportional to the extent to which the accelerations corr
sponding to the unconstrained motion, at that instant, do
satisfy the constraints; the matrix of proportionality
M 21/2B1, and the measure of the dissatisfaction of the co
straints is provided by the vector e. The second compone
proportional to the vector C that specifies the work done
the constraint forces under virtual displacements, at that
stant, and the matrix of proportionality is(M 21/2NM21/2).

Now the operatorN, being symmetric and idempotent, is a
orthogonal projection operator on the null space ofB, and the
vector B1b belongs to the range space ofBT. Furthermore, the
two right-hand members of Eq.~22! constitute twon-vectors that
are orthogonal to each other, because

NTB15~ I 2B1B!TB15~ I 2B1B!B15B12B1BB150,
(23)

sinceB1BB15B1. Equation~22! thus informs us that the scale
acceleration of the constrained system is simply the sum of
orthogonalvectors, one belonging to the null space ofB—denoted
N(B), and the other belonging to the range space ofBT—denoted
R(BT). Figure 1 depicts relations~22! and ~23! pictorially, and
reveals the geometrical elegance with which Nature appear
466 Õ Vol. 68, MAY 2001
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operate. It generalizes the results obtained in Ref.~@12#! to include
systems in which nonideal forces of constraint exist.

It should come as no surprise that the vectorsas and cs enter
Eq. ~19! in the same way. Though their genesis is vastly differe
they come, after all, from forces that act on the system. Not
however, that the sum (as1cs) does not enter directly. The matri
N5(I 2B1B) is a projection on the null space ofB, and hence it
is the sum’s projection on this space that enters the equatio
motion.

Conclusions
We summarize the contribution in this paper as follows.

1 To date, Largangian mechanics has been built upon the P
ciple of D’Alembert. This principle restricts Lagrangian mecha
ics to situations where the work done by the forces of constr
under virtual displacements is zero. In this paper we relax
restriction and thereby release Lagrangian mechanics from
confinement.

2 We have generalized D’Alembert’s principle to include sit
ations in which the constraints are not ideal, and the forces
constraint may do positive, negative, or zero work under virt
displacements. The generalized principle reduces to the u
D’Alembert’s principle when the constraints are ideal.

3 The generalized D’Alembert’s principle highlights the fa
that the description of the motion of a constrained mechan
system requires more than just a statement of the equation
constraint, i.e., Eqs.~2! and/or~3!. It alwaysalso requires a speci
fication of thenature of the forces of constraint that the con
straints engender. This is done in terms of the work done by
forces of constraint under virtual displacements, through a p
scription of then-vectorC(q,q̇,t). D’Alembert’s principle is thus
seen asone particular wayof specifying the nature of the force
of constraint, for it prescribes the vectorC(q,q̇,t) to be identi-
cally zero. In general, one has to rely on the discretion of
mechanician to specify the vectorC(q,q̇,t) upon examination of
the specific system whose motion needs to be modeled. W
D’Alembert’s principle is invoked while dealing with a given con
strained mechanical system—and this is most often the cas
analytical dynamics, to date—the burden of this specificat
‘‘seems’’ lifted from the shoulders of the mechanician, for th
principle simply setsC(q,q̇,t) to the zero vector. However, th
conscientious mechanism needs to examine if, and how well,
forces of constraint~in the given physical system being modele!
exhibit the behavior subsumed by this principle.

4 The framework of Lagragian mechanics is used to show
this generalized D’Alembert’s principle provides just the right e
tent of information to yield the accelerations of the constrain
systemuniquely, as demanded by practical observation. In t
situation that the constraints are ideal, these accelerations a

Fig. 1 The geometry of constrained motion is depicted using
projections on N„B … and R„B T

…. The projection of q̈ s on N„B …

is the same as that of „as¿c s… because Nq̈ sÄN„as¿c s…. The
vector B¿b is orthogonal to this projection.
Transactions of the ASME
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with those determined using formalisms developed by Lagran
Gibbs, and Appell, each of these being applicable only to the c
of ideal constraints.

5 We have presented here the general, explicit, equation
motion for mechanical systems with nonideal, equality, co
straints. They lead to a new and fundamental understandin
constrained motion. To the best of our knowledge, these equa
are arguably the simplest and most comprehensive so far dis
ered. They will aid in understanding the dynamics of mechan
systems in various fields such as biomechanics, robotics,
multibody dynamics, where such nonideal constraints abound

6 Our equations show that the constraint forcen-vector is made
up of two additive contributions:Qc5Qi

c1Qni
c . Explicit expres-

sions for each of these contributions are given in this paper.
contributionQi

c alwaysexists whether or not the constraints a
ideal, and it is dictated by the kinematic nature of the constrai
The contributionQni

c arises from aspecificationby the mechani-
cian of the nonideal nature of the constraints that may be invol
in any particular situation; it prevails when the constraint forc
do work under virtual displacements.
Journal of Applied Mechanics
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7 We have provided an insight into the geometry of co
strained motion revealing the simplicity and elegance with wh
Nature seems to operate.
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Stroh Finite Element
for Two-Dimensional Linear
Anisotropic Elastic Solids
A general solution satisfying the strain-displacement relation, the stress-strain laws
the equilibrium conditions has been obtained in Stroh formalism for the genera
two-dimensional anisotropic elasticity. The general solution contains three arbitrary c
plex functions which are the basis of the whole field stresses and deformations. By s
ing these arbitrary functions to be linear or quadratic, and following the direct fin
element formulation, a new finite element satisfying both the compatibility and equ
rium within each element is developed in this paper. A computer windows program is
coded by using the FORTRAN and Visual Basic languages. Two numerical exampl
shown to illustrate the performance of this newly developed finite element. One
uniform stress field problem, the other is the stress concentration problem.
@DOI: 10.1115/1.1364497#
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1 Introduction
Due to the anisotropy nature of composite materials, the

chanical behavior of composite structures is usually studied
using anisotropic elasticity. There are two main approaches d
ing with the two-dimensional linear anisotropic elasticity. One
Lekhnitskii formalism ~@1#! which begins with the stresses, th
other is Stroh formalism~@2,3#! which starts with the displace
ments. Both of these two formalisms are formulated by comp
variable functions. Although they are well known in the mecha
ics community, they are not very popular in the engineering so
ety. On the other hand, the finite element method is an impor
and popular tool for mechanical analyses. The numerous app
mate procedures discussed in the literature generally fall into t
categories: the direct method, the method of weighted residu
and the variational method~@4#!. Among them the displacemen
based variational formulation is the most popular one. To
authors’ knowledge, none of the results concluded by the com
variable formulation has ever been employed in the displacem
based finite element formulation. In this paper, we try to build
bridge connecting these two main formulations.

It is known that the equilibrium is usually not satisfied with
elements and between elements for a displacement-based
element. However, for a displacement-based complex vari
formulation—Stroh formalism, a general solution satisfying t
strain-displacement relation, the stress-strain laws and the equ
rium equations has been obtained explicitly~@3#!. Hence, it is
expected to get some merits by imbedding the general solutio
Stroh formalism into the finite element formulation, which will b
called ‘‘Stroh finite element’’ in this paper.

In Stroh formalism, the general solution contains three arbitr
complex functions which are the basis of the whole field stres
and deformations. Like the shape functions used in the finite
ment method, the arbitrary functions can be chosen to be poly
mials. Although they are complex variable functions, through
use of identities developed in the literature, for example~@5#!, the
entire formulation can be transformed into a real form express
like the usual finite element. Based upon this concept, the exp

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, Ma
4, 2000; final revision, November 30, 2000. Associate Editor: M. Ortiz. Discuss
on the paper should be addressed to the Editor, Professor Lewis T. Wheeler, D
ment of Mechanical Engineering, University of Houston, Houston, TX 77204-47
and will be accepted until four months after final publication of the paper itself in
ASME JOURNAL OF APPLIED MECHANICS.
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expressions of the stiffness matrices for two basic elements: lin
and quadratic elements, are derived in this paper. A finite elem
computer windows program is then coded by using the FO
TRAN and Visual Basic languages. Due to the use of the St
formalism, the compatibility and the equilibrium condition
within each element are all satisfied. The accuracy and versa
of the elements are then shown through several numer
examples.

2 Two-Dimensional Linear Anisotropic Elasticity
In a fixed rectangular coordinate systemxi , i 51,2,3, letui ,

s i j , « i j be, respectively, the displacement, stress, and strain.
strain-displacement equations, the stress-strain laws, and the e
tions of equilibrium are

« i j 5
1

2
~ui , j1uj ,i !, (2.1a)

s i j 5Ci jkseks , (2.1b)

s i j , j5Ci jksuk,s j50, (2.1c)

where repeated indices imply summation, a comma stands
differentiation andCi jks are the elastic constants which are a
sumed to be fully symmetric and positive definite. Assuming t
ui , i 51,2,3, depend onx1 and x2 only, the general solution to
~2.1! can be written in matrix notation as~@3#!

u5Af ~z!1Āf~z!52 Re$Af ~z!%,
(2.2a)

f5Bf~z!1B̄f~z!52 Re$Bf~z!%,

where

A5@a1 a2 a3#, B5@b1 b2 b3#,

f~z!5@ f 1~z1!, f 2~z2!, f 3~z3!#T, (2.2b)

za5x11pax2 .

An overbar denotes the complex conjugate and Re stands fo
real parts.f a(za), a51,2,3, are holomorphic complex function
which will be determined by the satisfaction of the boundary co
ditions. f is the stress function vector which is related to t
stresses by

s i152f i ,2 , s i25f i ,1 . (2.3)

y
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pa , a51,2,3, are the material eigenvalues whose imaginary p
are positive. (aa ,ba) are their associated eigenvectors. These v
ues can be determined by the following eigenrelation:

Nj5pj, (2.4a)

where

N5FN1 N2

N3 N1
TG , j5Fa

bG , (2.4b)

and

N152T21RT, N25T215N2
T , N35RT21RT2Q5N3

T ,
(2.4c)

Qik5Ci1k1 , Rik5Ci1k2 , Tik5Ci2k2 . (2.4d)

In ~2.4c! the superscriptT stands for the transpose, and the sup
script 21 means inverse.

It should be noted that the solutions given in~2.2! are derived
under the assumption thatpa , a51,2,3, are distinct. When the
material eigenvalues are repeated, it is possible that we ca
find three independent eigenvectors to construct the eigenve
matricesA and B. To overcome this degenerate case, a sm
perturbation of the material constants is usually introduced~@6#! in
numerical calculation, or a generalized eigenvector is introdu
to modify the formulation given in~2.2! ~@7#!.

If t is the surface traction at a point on a curve boundary, t

t5]f/]s, (2.5)

wheres is the arc length measured along the curved boundar
the direction such that, when one faces the direction of increa
s, the material is located on the right-hand side. We see that~2.3!
are special cases of~2.5! when the boundary is a plane parallel
the x2-axis or thex1-axis.

One of the special features of the Stroh formalism is the id
tities which transform the complex functions into real form e
pressions. With these identities, the mathematical manipula
becomes easier and the real form solution becomes possible
identity which plays an important role in our later formulation
now listed below~@8#!.

FA^^za
k &&BT A^^za

k &&AT

B^^za
k &&BT B^^za

k &&ATG5
1

2
N̂k~ I2 iNo!, (2.6a)

where

No5
1

p E
0

p

N~v!dv5F S H

2L STG , (2.6b)

and

N̂5x1I1x2N. (2.6c)

In the above, the angular bracket^̂ f a && denotes the diagonal ma
trix with the diagonal components varied according to the s
script a. The real matrix functionN(v) is related toN by N(0)
5N. The general definition ofN(v) is the same as that shown i
~2.4! except that all the submatricesNi(v) is calculated based
upon the real matricesQ(v), R(v) andT(v) which are defined
as

Qik~v!5Ci jksnjns , Rik~v!5Ci jksnjms , Tik~v!5Ci jksmjms ,

(2.7a)

where

n~v!5~cosv,sinv,0!, m~v!5~2sinv,cosv,0!,
(2.7b)

and v is an arbitrary real parameter. Whenv50, one can show
that ~2.7! is equivalent to~2.4d!. It has been proved~@9#! that the
three real matricesS, H, andL given in ~2.6b! are also related to
the material eigenvector matricesA andB by
Journal of Applied Mechanics
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H52iAAT, L522iBBT, S5 i ~2ABT2I !, (2.8)

where I is the unit matrix. It can be shown thatH and L are
symmetric and positive definite~@5#!.

With N̂ defined in~2.6c!, N̂k can be written explicitly as

N̂k5~x1I1x2N!k5x1
kI1kx1

k21x2N1 . . . 1Cr
kx1

k2rx2
r Nr1 . . .

1x2
kNk5F N̂1

^k& N̂2
^k&

N̂3
^k& N̂1

^k&TG (2.9)

where the 333 matricesN̂i
^k& , i 51,2,3 are the submatrices of th

636 matrix N̂k; Cr
k is the binomial coefficient.

Before going further, we like to describe some important fe
tures of the identity~2.6! which may be helpful for the under
standing of the following derivation:~1! All the matrices con-
sisted in the left-hand side of the identity~2.6! are complex, while
those in the right-hand side are real.~2! For the degenerate mate
rials whose eigenvaluespa are repeated, the eigenvector matric
A and B may not exist and hence it is difficult to calculate th
left-hand side of the identity~2.6!. However, all the real matrices
in the right-hand side of the identity~2.6! are related directly to
the material constants and no eigenvalue problems need t
solved. Hence, even for the degenerate materials, they can st
calculated easily without further efforts. Therefore, even our ba
formulation given in~2.2! are derived based upon the assumpti
that the material eigenvalues are distinct, if our final results are
expressed in terms of the real matrices such asN̂ defined in~2.6c!,
they can be applied to any kind of anisotropic materials includ
the degenerate materials such as the isotropic materials.

If the undetermined functionf(z) is approximated by a polyno
mial such as

f~z!5co1^^za&&c11 . . . 1^^za
n&&cn , (2.10)

Eq. ~2.2a! will become

u52(
k50

n

Re$A^^za
k &&ck%,

(2.11)

f52(
k50

n

Re$B^^za
k &&ck%.

Note that the coefficientsck ,k50,1, . . . ,n are complex numbers
Realizing that any complex number contains two real numb
combined together by the imaginary uniti 5A21, for the conve-
nience of derivation we may replaceck by two real column vec-
tors gk andhk such that

ck5ATgk1BThk , gk ,hk :real. (2.12)

The arbitrariness of the complex constantsck will not be restricted
by the replacement of two real constantsgk andhk , because the
eigenvectors contained in the eigenvector matricesA and B are
independent each other if their associated eigenvaluespa are dis-
tinct.

Substituting~2.12! into ~2.11! and using the identities shown i
~2.6a!, a real form solution for the displacementsu and the stress
functionsf can be obtained as

H u
fJ 5(

k50

n

N̂kHhk

gk
J 5(

k50

n F N̂1
^k& N̂2

^k&

N̂3
^k& N̂1

^k&TG Hhk

gk
J , (2.13a)

or

H u
fJ 5 Hho

go
J 1N̂Hh1

g1
J 1N̂2Hh2

g2
J 1 . . . 1N̂nHhn

gn
J . (2.13b)

Now, all we have to do is determining the unknown real coe
cients hk ,gk ,k50,1,2, . . . ,n by satisfying the boundary condi
tions for the given problems. The problem is now solved appro
mately in principle. An alternative approach which follows th
MAY 2001, Vol. 68 Õ 469
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spirit of the finite element method is dividing the entire body in
several small subdivisions and assuming the arbitrary func
f(z) to be a lower-order polynomial in each subregion. This
what we like to explore in this paper. Based upon this concept,
will show two simplest elements in the next two sections. One
approximated by linear function in each subregion, the othe
approximated by quadratic function in each subregion. That i

f~z!55
co

11^^za&&c1
1, region 1

co
21^^za&&c1

2, region 2

•

•

•

•

co
n1^^za&&c1

n , region n

(2.14)

in linear element.

f~z!55
co

11^^za&&c1
11^^za

2&&c2
1, region 1

co
21^^za&&c1

21^^za
2&&c2

2, region 2

•

•

•

•

co
n1^^za&&c1

n1^^za
2&&c2

n , region n

(2.15)

in quadratic element.

3 Linear Elements
By choosing the unknown functionf(z) in each element to be a

linear function as that shown in~2.14!, from ~2.13b! the displace-
ments and stress functions for each element may be express

H u
fJ 5 Hh0

go
J 1N̂Hh1

g1
J , (3.1)

or

u5ho1N̂1h11N̂2g1 ,

f5go1N̂3h11N̂1
Tg1 . (3.2)

Before converting the above expression into the finite elem
formulation, the physical meaning of the zero and first-order te
have been studied~see Appendix!. The discussion shown in th
Appendix reveals thatho represents rigid-body translation, and th
second component ofh1 represents rigid-body rotation. All the
other components ofh1 andg1 represent constant strain.

In addition to the above discussion, the continuity among e
ments is an important problem for the finite element formulati
In order to satisfy the continuity conditions, we try to represe
the displacement and stress function in terms of the nodal
placement. To this end, the transformation matrix betwe
(ho ,h1 ,g1) and the nodal displacements should be found. By
ing the triangular element with nodes 1, 2, and 3 shown in F
1~a!, and substituting the positions of nodes 1, 2, and 3 into
(3.2)1 , we have

un5H u~1!

u~2!

u~3!
J 5F I N̂1

~1! N̂2
~1!

I N̂1
~2! N̂2

~2!

I N̂1
~3! N̂2

~3!
G H ho

h1

g1

J , (3.3a)

where
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N̂1
~ i !5x1

~ i !I1x2
~ i !N1 ,

(3.3b)
N̂2

~ i !5x2
~ i !N2 , i 51,2,3.

Throughout this paper, the symbols with the superscripts~i! de-
note the values calculated at nodei. From~@10#!, we know that the
fundamental elasticity matricesN1 , N2 , andN3 have the units of
1,1/E andE, respectively. Here,E represents the Young’s modu
lus. Therefore, the transformation matrix relatingun and
(ho ,h1 ,g1) is doomed to be numerically ill-conditioned. To avo
this situation, we nondimensionalize the matrix by the followi
way:

un5H u~1!

u~2!

u~3!
J 5F I N̂1

~1!/ l o N̂2
~1!Eo / l o

I N̂1
~2!/ l o N̂2

~2!Eo / l o

I N̂1
~3!/ l o N̂2

~3!Eo / l o

G 5
ho

l oh1

l o

Eo
g1

6 ,

(3.4)

where l o and Eo are, respectively, the reference length a
Young’s modulus. By inversion, we have

5
ho

l oh1

l o

Eo
g1

6 5Ñun , (3.5a)

where

Ñ5F Ñ11 Ñ12 Ñ13

Ñ21 Ñ22 Ñ23

Ñ31 Ñ32 Ñ33

G5F I N̂1
~1!/ l o N̂2

~1!Eo / l o

I N̂1
~2!/ l o N̂2

~2!Eo / l o

I N̂1
~3!/ l o N̂2

~3!Eo / l o

G 21

.

(3.5b)

Back to ~3.2!, we now have

Fig. 1 „a… Linear triangular element, „b… traction distribution
for the linear element
Transactions of the ASME
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u5@ I N̂1 / l 0 N̂2Eo / l o#Ñun ,

f5go1@N̂3 N̂1
T#F Ñ21/ l o Ñ22/ l o Ñ23/ l o

Ñ31Eo / l o Ñ32Eo / l o Ñ33Eo / l o
Gun .

(3.6)

With the stress function expressed by the nodal displacement
traction along the line connecting nodesi andj ~see Fig. 1~b!! can
now be calculated by using~2.5! and ~3.6!. That is

t~ j i !5
df

ds

5F d

ds
Ñ3

d

ds
Ñ1

TGF Ñ21/ l o Ñ22/ l o Ñ23/ l o

Ñ31Eo / l o Ñ32Eo / l o Ñ33Eo / l o
Gun ,

(3.7a)

where

d

ds
N̂1

T5
dx1

ds
I1

dx2

ds
N1

T ,

(3.7b)
d

ds
N̂35

dx2

ds
N3 ,

and

dx1

ds
5cosc5

x1
~ j !2x1

~ i !

l j i
,

dx2

ds
5sinc5

x2
~ j !2x2

~ i !

l j i
.

(3.7c)

l j i is the length connecting nodesi and j. Since the traction is
uniformly distributed along the straight boundary for the pres
linear element, the resultant forces along this line contributing
nodesi and j can be considered to be equal. That is,

t~ i !5t~ j !5
l j i

2
t~ j i !. (3.8)
l

t
e

o
p
a
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Therefore, the vector of the nodal forcestn may be written as

tn5H t~1!

t~2!

t~3!
J 55

1

2
~ l 21t

~21!1 l 13t
~13!!

1

2
~ l 21t

~21!1 l 32t
~32!!

1

2
~ l 13t

~13!1 l 32t
~32!!

6 . (3.9)

By employing~3.7! and ~3.9!, we now have

tn5Kun , (3.10a)

K5F K11 K12 K13

K21 K22 K23

K31 K32 K33

G . (3.10b)

The submatricesK i j of the element stiffnessK can be written
explicitly as

K i j 5
1

2l o
~DN̂3

~ i !Ñ2 j1EoDN̂1
~ i !T

Ñ3 j !, (3.10c)

where

DN̂1
~ i !T

5~Dx1!~ i !I1~Dx2!~ i !N1
T , DN̂3

~ i !5~Dx2!~ i !N3 ,
(3.10d)

and

~Dxi !
~1!5xi

~2!2xi
~3! , ~Dxi !

~2!5xi
~3!2xi

~1! ,

(3.10e)
~Dxi!

~3!5xi
~1!2xi

~2! , i51,2.

The internal stresses at any point within the element can now
calculated by using~2.3!, ~3.2!, and~3.5a!. The results are
H s1

s2
J 5F 21

l o
~N3Ñ211EoN1

TÑ31!
21

l o
~N3Ñ221EoN1

TÑ32!
21

l o
~N3Ñ231EoN1

TÑ33!

Eo

l o
Ñ31

Eo

l o
Ñ32

Eo

l o
Ñ33

G un , (3.11a)
the

rm
have

ent
where

s15$s11,s12,s13%
T, s25$s21,s22,s23%

T. (3.11b)

It should be noted thats21 and s12 obtained above look like to
have different expressions. By knowing the structures ofN1 and
N3 shown in ~@5#!, it can easily be proved that they are rea
identical.

From the above derivation, we see that the displacemenu
within the element, the tractiont along the boundary, and th
internal stresses (s1 ,s2) can all be expressed in terms of th
nodal displacementun , as shown in (3.6)1 , ~3.7!, and~3.11!. The
element stiffness matrixK which is the core matrix in the finite
element formulation is obtained in~3.10!. It can also be seen tha
all these formulas are written explicitly and do not contain a
integrals. This feature may save us a lot of computational eff
Moreover, the present element is valid for any kind of anisotro
materials and considers not only in-plane deformations
stresses (u1 ,u2 ,s11,s12,s22) but also the antiplane deformation
and stresses (u3 ,s13,s23).
ly

s

e
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4 Quadratic Elements
We now consider the next higher order approximation, i.e.,

second-order approximation. By~2.13b!, we have

H u
fJ 5 Hho

go
J 1N̂Hh1

g1
J 1N̂2Hh2

g2
J , (4.1a)

or

u5ho1N̂1h11N̂2g11N̂1
^2&h21N̂2

^2&g2 ,
(4.1b)

f5go1N̂3h11N̂1
Tg11N̂3

^2&h21N̂1
^2&T

g2 .

Similar to the linear element, the next step is trying to transfo
the expression in terms of the nodal displacements. Since we
five sets of unknown coefficients (h0 ,h1 ,g1 ,h2 ,g2), the most ap-
propriate element should be four-noded quadrilateral elem
without internal node~see Fig. 2~a!!. To be consistent with the
MAY 2001, Vol. 68 Õ 471
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node number, we need to reduce the number of unknown co
cients. The most common way in finite element formulation~@11#!
is combining the last two terms by using one coefficient. Bef
combining the last two terms, one should note thatN̂1

^2& andN̂2
^2&

have different units. Knowing that~@10#! the fundamental matri-
ces N1 and N2 have the units of 1 and 1/E, respectively, the
matricesN̂1

^2& and N̂2
^2& defined in~2.9! will have the units ofl 2

and l 2/E. Therefore, to avoid adding the terms with differe
units, we let

l o
2h25

l o
2

Eo
g2 , (4.2)

where l o and Eo are, respectively, the reference length a
Young’s modulus. With this choice, we now have only four s
of unknown coefficients corresponding to four nodes, and the
placement fieldu can be expressed as

u5@ I N̂1 / l o N̂2Eo / l o ~N̂1
^2&1N̂2

^2&Eo!/ l o
2#5

ho

l oho

l o

Eo
g1

l o
2h2

6 .

(4.3)

In the following, all the derivations are similar to those d
scribed in Section 3. Hence, the detailed explanation will not
repeated here, only the final results are provided. Similar to~3.5b!,
the transformation matrixÑ for the quadratic element is now ob
tained as

Fig. 2 „a… Quadratic quadrilateral element, „b… traction distri-
bution for the quadratic element
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Ñ5F Ñ11 Ñ12 Ñ13 Ñ14

Ñ21 Ñ22 Ñ23 Ñ24

Ñ31 Ñ32 Ñ33 Ñ34

Ñ41 Ñ42 Ñ43 Ñ44

G
5F I N̂1

~1!/ l o N̂2
~1!Eo / l o ~N̂1

^2&~1!
1N̂2

^2&~1!
E0!/ l 0

2

I N̂1
~2!/ l o N̂2

~2!Eo / l o ~N̂1
^2&~2!

1N̂2
^2&~2!

E0!/ l 0
2

I N̂1
~3!/ l o N̂2

~3!Eo / l o ~N̂1
^2&~3!

1N̂2
^2&~3!

Eo!/ l o
2

I N̂1
~4!/ l o N̂2

~4!Eo / l o ~N̂1
^2&~4!

1N̂2
^2&~4!

Eo!/ l o
2

G 21

.

(4.4)

The unknown coefficients (h0 ,h1 ,g1 ,h2) may now be expressed
as

5
ho

l oh1

l o

Eo
g1

l o
2h2

6 5Ñun . (4.5)

Similar to ~3.7!, the tractiont along the boundary connectin
nodesi and j is ~Fig. 2~b!!

t~ j i !5
dx2

ds
N3h11S dx1

ds
I1

dx2

ds
N1

TDg11H 2F S x1

dx2

ds
1x2

dx1

ds DN3

1x2

dx2

ds
N̂3

^2&G1
2

Eo
Fx1

dx1

ds
I1S x1

dx2

ds
1x2

dx1

ds DN1
T

1x2

dx2

ds
N̂1

^2&TG J h2 . (4.6)

Similar to ~3.9!, the nodal forcetn may be written as

tn5H t~1!

t~2!

t~3!

t~4!

J 5

¦

1

6
@ l 21~2t1

~21!1t2
~21!!1 l 14~2t1

~14!1t4
~14!!#

1

6
@ l 32~2t2

~32!1t3
~32!!1 l 21~2t2

~21!1t1
~21!!#

1

6
@ l 43~2t3

~43!1t4
~43!!1 l 32~2t3

~32!1t2
~32!!#

1

6
@ l 14~2t4

~14!1t1
~14!!1 l 14~2t4

~43!1t3
~43!!#

§

(4.7)

wheret i
( j i ) andt j

( j i ) denote, respectively, the values of the tracti
at nodesi and j along the boundary connecting nodesi and j.

Similar to ~3.10!, the element stiffness matrixK is obtained as

K5F K11 K12 K13 K14

K21 K22 K23 K24

K31 K32 K33 K34

K41 K42 K43 K44

G , (4.8a)

K i j 5DN̂3
~ i !Ñ2 j / l o1DN̂1

T~ i !
Ñ3 jEo / l o1~DN̂3

^2&~ i !

1EoDN̂1
^2&T~ i !

!Ñ4 j / l o
2 (4.8b)

where
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DN̂3
~ i !5~Dx2!~ i !N3 , DN̂1

T~ i !
~Dx1!~ i !I1~Dx2!~ i !N1

T ,

DN̂3
^2&~ i !

5@a i ,i 11~x2
~ i 11!2x2

~ i !!1b i ,i 11~x1
~ i 11!2x1

~ i !!

1a i ,i 21~x2
~ i !2x2

~ i 21!!1b i ,i 21~x1
~ i !2x1

~ i 21!!#N3

1@b i ,i 11~x2
~ i 11!2x2

~ i !!1b i ,i 21~x2
~ i !2x2

~ i 21!!#N3
^2& ,
(4.8c)

DN̂1
^2&T~ i !

5@a i ,i 11~x1
~ i 11!2x1

~ i !!1a i ,i 21~x1
~ i !2x1

~ i 21!!#I

1@a i ,i 11~x2
~ i 11!2x2

~ i !!1b i ,i 11~x1
~ i 11!2x1

~ i !!

1a i ,i 21~x2
~ i !2x2

~ i 21!!1b i ,i 21~x1
~ i !2x1

~ i 21!!#N1
T

1@b i ,i 11~x2
~ i 11!2x2

~ i !!1b i ,i 21~x2
~ i !2x2

~ i 21!!#N1
^2&T

,

and

~Dx1!~ i !5
1

2
~x1

~ i 11!2x1
~ i 21!!, ~Dx2!~ i !5

1

2
~x2

~ i 11!2x2
~ i 21!!,

a i , j5
1

3
~2x1

~ i !1x1
~ j !!, b i , j5

1

3
~2x2

~ i !1x2
~ j !!, (4.8d)

N1
^2&T

5N3N21N1
T2

, N3
^2&5N3N11N1

TN3 .

In the above, if the value of the superscript (i 21) equals to zero,
it should be replaced by 4 which is the last number of nodes of
present quadratic element.

Similar to ~3.11a!, the internal stressess1 ands2 are

s152@N3 N1
T 2@x1N31x2N3

^2&#12Eo@x1N1
T1x2N1

^2&T
##

3F Ñ21/ l o Ñ22/ l o Ñ23/ l o Ñ24/ l o

Ñ31Eo / l o Ñ32Eo / l o Ñ33Eo / l o Ñ34Eo / l o

Ñ41/ l o
2 Ñ42/ l o

2 Ñ43/ l o
2 Ñ44/ l o

2
G un ,

(4.9)
s25@0 I 2N̂312EoN̂1

T#

3F Ñ21/ l o Ñ22/ l o Ñ23/ l o Ñ24/ l o

Ñ31Eo / l o Ñ32Eo / l o Ñ33Eo / l o Ñ34Eo / l o

Ñ41/ l o
2 Ñ42/ l o

2 Ñ43/ l o
2 Ñ44/ l o

2
G un .

Although the formulas derived in the previous two sectio
look complicated, they are all explicit real closed-form expre
sions and do not contain any integrals. This really helps a lo
numerical programming shown next.

5 Numerical Examples
Based upon the usual finite element procedures and the fo

lations derived in Sections 3 and 4, a computer windows prog
was coded by using the FORTRAN and Visual Basic languag
To save the space of this paper, one may refer to~@12#! for the
detail programming techniques and numerous examples. In
section, only two simple examples are shown to illustrate the p
formance of these newly developed elements. The first check
our written computer program is the problem with uniform stre
field whose solution should be exact no matter what element
division is made. The second one is the stress concentration p
lem of which the fine meshes near holes are needed to g
convergent solution. To show the versatility, in these two pr
lems we include the cases of in-plane and antiplane problems
the anisotropic and isotropic materials. The main reason of inc
ing these special features is as follows:~1! the ‘‘two-
dimensional’’ used in our paper title includes not only the in-pla
but also the antiplane problems and the problems where in-p
and antiplane deformations couple each other;~2! the ‘‘anisotrop-
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Fig. 3 „a… An anisotropic rectangular plate subjected to uni-
form tension, in-plane shear, and antiplane shear „patch 1 …; „b…
an anisotropic rectangular plate subjected to uniform tension,
in-plane shear, and antiplane shear „patch 2 …

Fig. 4 „a… A linear finite element mesh for a quadrant of the
plate with a circular hole under uniform tension, „b… a quadratic
finite element mesh for a quadrant of the plate with a circular
hole under uniform tension.
MAY 2001, Vol. 68 Õ 473
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ic’’ which need not have any material symmetry restrictions a
includes the degenerate cases of which the material eigenva
are repeated such as the isotropic materials.

Example 1: Uniform Stress Field. Consider a rectangula
composite laminate subjected to a uniform load along
boundary edges~Fig. 3!. The uniform load includes the in-plan
tension s11

0 51000 lb./in., s22
0 52000 lb./in., in-plane shears12

0

53000 lb./in. and antiplane shears13
0 54000 lb./in., s23

0

55000 lb./in. The laminate has ply orientation@0/30/230# which
will behave as an anisotropic material. Each lamina has a th
ness of 0.04 in and is composed of graphite/epoxy whose mat
properties are: E1526.253106 psi, E251.493106 psi, G12

51.043106 psi, n1250.28. The length and width of the plate a
l 516 in, h54 in. To ensure the exactness of the solutions for
problems with uniform stress field, several different patches
elements~such as Fig. 3! have been tested and the Stroh fin
element solutions~linear or quadratic elements discussed in t
paper! really coincide exactly with the exact uniform stre
solution ~@12#!.

Example 2: Stress Concentration. After the elements passe
the simple test of uniform stress field, a more realistic test suc
a circular hole in a rectangular plate subjected to uniform tens
(s55000 lb./in.) is considered. Two different kinds of plate a
tested. One is an isotropic plate made of aluminum whose p
erties are:E5107 psi, G53.853106 psi, n50.3. The other is a
fiber-reinforced composite plate whose properties are:E157.8
3106 psi, E252.63106 psi, G1251.253106 psi, n1250.25. The
length, width, and thickness of the plate are, respectivelyl
548 in., h540 in., t51 in. Since the thickness of the plate
relatively thinner than the length and width, the plane stress c

Fig. 5 „a… Comparison of the normal stresses on two edges for
the plate made of isotropic materials, „b… comparison of the
normal stresses on two edges for the plate made of orthotropic
materials.
474 Õ Vol. 68, MAY 2001
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dition will be assumed in our finite element modeling. Due
double symmetry, only a quadrant need be analyzed. A lin
element mesh with 124 elements and 80 nodal points and a
dratic element mesh with 84 elements and 102 nodal points
shown in Figs. 4~a! and 4~b!. The roller boundary conditions ar
also shown to simulate the symmetry condition and to restrain
rigid-body movement. The results for normal stresses on
edges are shown in Figs. 5~a! and 5~b! in which the exact solu-
tions for infinite plates~@13,14#! and the numerical solutions from
the commercial finite element code NASTRAN are available

Fig. 6 „a… Deformed configuration and Von Mises stress con-
tour for the plate containing a circular hole „isotropic case …, „b…
deformed configuration and Von Mises stress contour for the
plate containing a circular hole „orthotropic case …

Table 1 Comparison of the computation time for the stress
concentration problem „on K7-600 PC with 128MB RAM …
Transactions of the ASME
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comparison. The agreement is satisfactory except for the point
the circular hole boundary, which can be improved by more fi
meshes near holes. Figure 6 is a diagram showing the defor
configuration and the Von Mises stress contour, which is a
agree with the plot shown by commercial finite element co
NASTRAN. Since this simple example can also be solved v
well by using the commercial finite element, to show the adv
tage of the present method their corresponding computation
is listed in Table 1. From this result, we see that our method re
has the potential to improve the efficiency and accuracy.

6 Concluding Remarks
Through the numerical examples shown in the last section,

know that the Stroh finite element is accurate enough to perf
the usual finite element task. Inheriting from the Stroh formalis
this newly developed finite element is valid for the generaliz
two-dimensional anisotropic elasticity problems which include
plane and antiplane problems with the most general anisotr
~includes monoclinic, orthotropic, and isotropic, etc.! materials.
Moreover, this element satisfies both of the compatibility a
equilibrium conditions within each element. The derived resu
show that the stiffness matrix can be written explicitly and do
not contain any integrals. Thus, the efficiency and accuracy c
pared with the conventional finite element is an interesting to
for the future study. Our preliminary numerical comparison
the problem of stress concentration supports our observation.
also hoped that through this work similar studies combining
analytical work with the numerical techniques can be raised
improve the existing technology.
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Appendix
From ~2.3!, we know that the stresses are the first derivative

the stress function. Thus, the stresses are identical to zero
zeroth-order approximation and the displacement is constan
the entire field. Therefore, the zeroth-order term represents
rigid-body translation.

We now consider the case of the uniform stresss115s with all
the other stress componentss i j 50 and all the rigid-body transla
tions are fixed (h05g050). By ~3.2! we have

f5N̂3h11N̂1
Tg1 . (A1)

Use of ~2.3! may lead to

H s11

s21

s31

J 5H s
0
0
J 52f,252N3h11N1

Tg1 ,

(A2)

H s12

s22

s32

J 5H 0
0
0
J 52f,15g1 .

Hence,

g150, N3h152sH 1
0
0
J . (A3)

Note thatN3 in ~A3! is a sigular matrix. The existence of solution
to this kind of problems has been discussed in~@8#!, and its solu-
tion is
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h152sN3
^21&H 1

0
0
J 1kH 0

1
0
J , (A4)

wherek is an arbitrary constant andN3
^21& is defined as

N3
^21&N35N3N3

^21&5I2 , I25F 1 0 0

0 0 0

0 0 1
G . (A5)

At first glance, it looks ridiculous to have a nonunique solutio
By further studying the solution relating

h05g05g150, and h15H 0
k
0
J , (A6)

we see that

u5x1h11x2N1h15H 2kx2

kx1

0
J ,

(A7)

f5x2N3h150,

where the second equalities are obtained with the help of
structures ofN1 andN3 ~@5#!. By the expression shown above,
can easily be understood why we have a nonunique solution
cause the rigid-body rotationk is not fixed for our present prob
lem. With this presentation, it is noted that the rigid-body rotati
is included in the first-order approximation. Therefore, wh
implementing the finite element procedure, not only the rig
body translation h0 but also the rigid-body rotationh1

5(0,k,0)T should be fixed in order to have a unique solution.
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Scattering of a Rayleigh Wave by
an Elastic Wedge Whose Angle is
Greater Than 180 Degrees
The steady-state problem of scattering of an incident Rayleigh wave by an elastic w
whose angle is greater than 180 degrees is considered. The problem is reduced
numerical solution of a pair of Fredholm integral equations of the second kind wh
kernels consist of elementary functions. Numerical results are given for the amplitud
phase of the Rayleigh waves transmitted and reflected by the corner.
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1 Introduction
Hitherto, there have been a number of investigations into

problem of scattering of Rayleigh waves by an elastic wed
Generally these methods derive equations for the problem w
are then solved either numerically or approximately. Knopoff@1#
has reviewed many of the earlier efforts. Mal and Knopoff@2#
give an approximate solution for wedge angles less that 180
grees. Momoi@3# considered the 90-deg wedge. Gautesen@4,5#
considered wedges whose angles are less than 180 deg using
rier transform methods. Fujii@6# in an extension of his earlie
work gives results for a wide range of wedge angles. Using
Sommerfeld-Malivzhinetz method, Budaev and Bogy@7,8# have
derived exact equations for this problem. They give corrected
merical results in@9#.

The method of solution used here is quite simple. First
problem is symmetrized. This reduces the number of the unkn
displacements on the traction-free surfaces from four to two.
course, the problem must then be solved twice—once for the s
metric case and once for the antisymmetric case. A free-sp
Green’s function integral representation of the displacement
used. This representation is valid in the entire plane, and not
in the region occupied by the elastic material. From this integ
representation, the tractions, dilatation, and rotation are comp
on a line just below thex-axis (x2502)—see Fig. 1. From the
integral representation of the displacements, it follows that th
quantities vanish forx1.0 and are unknown forx1,0. Next the
Fourier transform of these quantities is taken, followed by sub
tution of a suitable representation of the Fourier transform of
displacementsū j (j) on the traction-free surfacex250, x1.0. The
branch cut and Rayleigh poles ofū j (j) are shown in Fig. 2. A pair
of Fredholm integral equations of the second kind is achieved
computing the jump across the branch cut ofū j (j). The kernels of
these integral equations consist of elementary functions and
continuous except for an isolated square-root singularity. T
Fourier transform of the unknown tractions, dilatation and rotat
on the linex250, x1,0 are continuous across the branch cut
ū j (j) and therefore do not appear in the Fredholm integral eq
tions.

The wedge angle is restricted to the range 189 deg to 327
Beyond this range of wedge angles, numerical instabilities ar
because a pole is approaching the contour of integration. T
problem can be corrected by using a more sophisticated inte

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the JOURNAL OF APPLIED MECHAN-
ICS. Manuscript received by the ASME Applied Mechanics Division, June 7, 20
final revision, Nov. 21, 2000. Associate Editor: A. K. Mal. Discussion on the pa
should be addressed to the Editor, Professor Lewis T. Wheeler, Department o
chanical Engineering, University of Houston, Houston, TX 77204-4792, and wil
accepted until four months after final publication of the paper itself in the JOURNAL
OF APPLIED MECHANICS.
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tion scheme to account for this phenomenon. These results ap
to be approaching the known limiting values for a 180-deg wed
~an elastic half-space! and a 360-deg wedge~a semi-infinite
crack!.

In the next section the governing Fredholm integral equati
are derived. In the last section the numerical results are prese
and discussed.

2 Derivation of the Integral Equations
The diffraction of steady-state waves by an elastic wed

whose wedge anglea is greater than 180 degrees is consider
The location of the wedge; the coordinate system; and the i
dent, transmitted and reflected surface waves are shown in Fi
By using the free-space Green’s stress tensor, an integral re
sentation of the total displacementsuk(x1 ,x2) is given by

uk~x1 ,x2!H~x!

5uk
in~x1 ,x2!1(

i 51

2 E
0

`H t i2;k
G ~x12y,x2!ui~y,0!

1(
j 51

2

t i j ;k
G ~x12t1y,x22t2y!njui~ t1y,t2y!J dy,

k51,2. (2.1)

Here, H(x)51 if (x1 ,x2) is a point in the elastic material an
H(x)50 otherwise. The incident field is denoted byuk

in(x1 ,x2)
and since the incident field is a Rayleigh surface wa
uk

in(x1 ,x2)50. The free-space Green’s stress tensor is denote
t i j ;k

G (x1 ,x2). The importance of~2.1! is that it holds for all points
(x1 ,x2) and not just for points lying within the elastic materia
The normalnj and tangentt j to the lower traction-free surface ar
given by

n15t25sina, n252t152cosa (2.2)

wherea is the wedge angle. To reduce the number of unknow
the problem is divided into an antisymmetric (l 51) and symmet-
ric ( l 52) problem. For the symmetric problem, the normal a
tangential displacements on the traction-free surfaces are e
and for the antisymmetric problem they have the opposite s
Substitution of this result into~2.1! reduces the number of un
knowns by one half, but then the problem must be solved tw
~once forl 51 and once forl 52).

The rotation, dilatation, shear, and normal tractions are co
puted from~2.1! on the linex252d2, 2`,x1,`. These quan-
tities vanish forx1.0 and are unknown forx1,0. Then the Fou-
rier transform of these quantities is taken. The Fourier transfo
is defined by

0;
er
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F$u~x1!!%5kLE
0

`

exp@ ikLjx1#u~x1!dx1 (2.3)

wherekL denotes the wave number of longitudinal waves. Af
taking the limit asd→0, the result is

(
j 51

2

~21! i 1 jBi j ~j,g1 ,g2!ū j~j!1g i
21Ui~j!5Di

2 (2.4)

g i
21R~j!ūi~j!1(

j 51

2

Bi j ~j,g1 ,g2!U j~j!5Di 12
2 (2.5)

where

Bi j ~j,z1 ,z2!5~21! izi
21a~j!d i j 22j~12d i j ! (2.6)

g i5~c2 /ci1j!1/2~c2 /ci2j!1/2 (2.7)

a~j!5k222j2, k5c2 /c1 (2.8)

Ui~j!5~21! l(
j 51

2

bi j ~j,z1 ,z2!ū j~j i !, zj5g j (2.9)

bi j ~j,z1 ,z2!5a~j i !d i j 12~21! ij i~12d i j !~j sina1zi cosa!
(2.10)

j i5j cosa2zi sina (2.11)

R~j!5a2~j!14j2g1g2 , (2.12)

d i j denotes the Kronecker delta, andc2 andc1 denote the speed o
longitudinal and transverse waves. The functionsD j

2 represent
the unknown Fourier transforms of the dilatation, rotation, a
tractions forx1,0. These functions are analytic in the lower ha
of the complexj-plane, whileū j (j), which denotes the Fourie
transform ofuj (x1,0), x1.0, is analytic in the upper half of the
complex j-plane. The Rayleigh functionR(j) satisfiesR(kR)

Fig. 1 Incident, transmitted, and reflected surface waves

Fig. 2 Branch cut and location of Rayleigh poles of ū j„j…
Journal of Applied Mechanics
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50 wherekR5c2 /cR andcR is the speed of Rayleigh waves. It i
convenient to consider the following three linear combinations
~2.4!–~2.5!:

ūi~j!2
g i

R~j! (j 51

2

Bi j ~j,g1 ,g2!U j~j!

5
1

2j S D32 i
2 1~21! i

a~j!

R~j!
D52 i

2 D (2.13)

@a4~j!216j4g1
2g2

2#ū1~j!14j2g1
2g2a~j!

3(
j 51

2

~21! jB1 j~j,g1 ,g2!ū j~j!22jg1R~j!U2~j!

5D (2.14)

where

D5a2~j!@g1D3
21a~j!U1~j!#28j3g1

2g2
2D2

2 .

Figure 2 shows the poles and branch cut ofū j (j), the Fourier
transform of the displacements on the upper traction-free surf
The following representation ofū j (j) is used:

ū j~j!5
uj

i

j2kR
1

Aluj
r

j1kR
2

1

2p i E1

` wj~z!

z1j
dz1BjF

1~j!

(2.15)

where

u1
i 52u1

r 52kRg1~kR!/k2, u2
i 5u2

r 5a~kR!/k2. (2.16)

The first term in~2.15! represents the incident surface wave. T
next term represents the surface wave reflected and transmitte
the corner—recall that by symmetrizing the problem there i
surface wave incident on both of the traction-free surfaces.
constantAl is then given by

Al5Rc1~21! lTc (2.17)

where Rc and Tc denote the reflection and transmission coe
cients for surface waves. The third term in~2.15! is analytic ev-
erywhere except along the branch cut shown on Fig. 2. The qu
tity wj (j) is to be determined. The constantBj in the last term of
~2.15! is to be chosen so thatwj (j) is finite atj5kR . The func-
tion F1(j) is analytic in the upper half of the complexj-plane. It
is easily computed in closed form by the Wiener-Hopf sum sp
ting:

F1~j!1F2~j!5
g1~j!2g1~kR!

kR
22j2 2

g1~j!2g1~z0!

z0
22j2 (2.18)

where the choicez05k(12 i )1/2 has been made andF2(j)
5F1(2j).

Next ~2.15! is substituted into~2.4!, ~2.5!, ~2.13!, and ~2.14!.
The result contains no poles in the lower half of the comp
j-plane. Then the difference of~2.4! with i 51, ~2.13! and ~2.14!
evaluated atj52j01 i0 andj52j02 i0 is taken. In~2.13! j0 is
restricted to the rangej0.k, while in ~2.4! and ~2.14!, 1,j0
,k. This yields the following Fredholm integral equations f
wj (j):

wj~j!1(
k51

2 H 2
1

2p i E1

`

Wjk~j,z!wk~z!dz1Wjk~j,2kR!uk
i

1AlWjk~j,kR!uk
r 1BkGjk~j!J 50,

cj /c1,j (2.19)

a~j!w1~j!12jg1w2~j!50, 1,j,k. (2.20)
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When 1,j,k, w2(j) is defined by~2.20!. When the angle exte
rior to the wedge is smaller than the angle of head waves, s
additional steps are required to arrive at~2.20!. These are dis-
cussed at the end of this section. Here,

Wjk~j,z!5Vjk~2j,g1 ,g2 ,z!2Vjk~2j,sg1 ,2g2 ,z!
(2.21)

wheres5sgn(k2j) and

Vjk~j,z1 ,z2 ,z!52(
i 51

2
zjBji ~j,z1 ,z2!bik~j,z1 ,z2!

~a2~j!14j2z1z2!)~z1j i !
, j,2k

(2.22)

V1k~j,z1 ,z2 ,z!52
2jz1

a2~j!24j2z1z2

3S 2jz1z2a~j!B1k~j,z1 ,z2!

~a2~j!14j2z1z2!~z1j!

1
b2k~j,z1 ,z2!

~z1j2! D , 2k,j,21.

(2.23)

Also,

Ĝjk~j!5Gjk~j!1g jd jk~11s!~z0
22kR

2 !/@~kR
22j2!~z0

22j2!#
(2.24)

where Gjk(j) is the discontinuity across the branch cut of t
function F jk(j,g1 ,g2) ~see~2.21!!. The functionF jk(j,z1 ,z2) is
defined by the right side of~2.22! and ~2.23! with the quantities
(z1j i)

21 and (z1j)21 replaced byF1(j i) andF1(j), respec-
tively.

For numerical stability of the solution to~2.19!, wj (kR) is re-
quired to be bounded. Thus the constantsBj are determined by

lim
j→kR

~kR
22j2!(

k51

2 H 2
1

2p i E1

`

Wjk~j,z!wk~z!dz

1Wjk~j,2kR!uk
i 1AlWjk~j,kR!uk

r 1BkGjk~j!J 50,

j 51,2. (2.25)

Two more useful relations follow from evaluating either~2.4!
or ~2.5! at j52c2 /ci . In order that the displacements on th
traction-free surfaces have the right asymptotic behavior far fr
the corner~see Gautesen@10#!, ū2(21) and ū1(2k) must be
finite. The unknown quantitiesD j

2(j) are analytic near thes
points. Thus,

a~1!ū2~21!1~21! l@sin 2aū1~2cosa!1a~cosa!ū2~2cosa!#

50 (2.26)

ū1~2k!2~21! l@cos 2aū1~2k cosa!1sin 2aū2~2k cosa!#

50. (2.27)

Next ~2.15! is substituted into~2.26! and ~2.27!. None of the re-
sulting integrals are Cauchy principal-value integrals.

To obtain the final integral equations the constantsAl , B1 , and
B2 are eliminated from~2.19! by using~2.25! and ~2.27! when j
51 and by using~2.25! and ~2.26! when j 52. From the integral
equations it follows that w1(j)5O((c2 /cj2j)1/2) near j
5c2 /cj , j 51,2 and thatw2(j)5O((12j)1/2) near j51. It is
convenient to introduce new unknown functionsŵj (j) defined by

w1~j!5g1g2ŵ1~j!/j2, w2~j!5g1ŵ2~j!/j. (2.28)

Then the kernels of resulting integral equations are continu
except for square-root singularities atz51,k.
478 Õ Vol. 68, MAY 2001
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Care must be exercised in devising a numerical integra
scheme to solve the resulting Fredholm integral equations of
second kind. For example, the stresses are singular near the c
~see Karp and Karal@11#!. This singularity is different for the
symmetric (l 52) and antisymmetric (l 51) problems. This sin-
gularity reflects itself in the behavior ofŵj (j) as j→` and has
been accounted for.

When the wedge’s exterior anglea052p2a is less than the
head wave angleah5arccos(k21), some extra steps are require
to achieve~2.20!. After substitution of~2.15! into ~2.4! when i
51, taking the difference of the result evaluated atj52j01 i0
andj52j02 i0, 1,j0,k gives

w~u!2~21! lH~u2na0!w~u2na0!50, 0,u,ah
(2.29)

where n51, H(u) is the Heaviside function, and withj
5k cosu, w(u) is defined by

w~u!5a~j!w1~j!12jg1w2~j!, 1,j,k. (2.30)

Examination of~2.29! on the intervala0,u,min(2a0,ah) shows
that w(u) also vanishes on this interval. Thus eitherw(u)50, 0
,u,ah , or w(u) satisfies~2.29! with n52. In the latter case this
process is repeated untilna0>ah . Eventually this leads to the
conclusion thatw(u)50, 0,u,ah , which by ~2.30! establishes
~2.20!.

3 Results and Discussion
The reflection coefficientRc and transmission coefficientTc are

related toAl by Al5Rc1(21)lTc , l 51,2. Once the solution
wj (j) has been found, the constantAl can be computed from
either ~2.26! or ~2.27! after using~2.25! to eliminateB1 andB2 .
These values should of course be the same. Here the maxim
value of the amplitude of their differences was found to be l
that 0.0003 over the range of wedge angles considered. With P
son’s ratio equal to 0.25, the amplitude and phase of the reflec
and transmission coefficients versus the wedge angle are plo
in Figs. 3 and 4, for 189 deg,a,327 deg. Beyond these angle
the numerical scheme became unstable. For wedge angles
than 189 deg a pole in the analytic continuation of the nonhom
geneous term approaches the contour of integration, while
wedge angles greater than 327 deg a pole in the analytic con
ation of the kernel approaches the contour of integration. T
numerical integration scheme that has been used did not acc
for this behavior. For a 180-deg wedge~an elastic half-space!
Rc50 and Tc51, while for a 360-deg wedge~a semi-infinite

Fig. 3 Amplitude of the reflection and transmission coeffi-
cients versus wedge angle „in degrees … for Poisson’s ratio
Ä0.25. The exact values for a 360-deg wedge are indicated by
an asterisk.
Transactions of the ASME
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crack! Rc520.0835 . . . i and Tc520.1817 . . . i ~see e.g.,
Achenbach, Gautesen, and McMaken@12#!. The limiting values of
the reflection and transmission coefficients for a 360-deg we
are indicated by an asterisk in Figs. 3 and 4. In Fig. 3 it appe
that as the wedge angle increases from 180 deg to 360 deg
magnitude of the transmission coefficient decreases from 1
0.181 . . . , while the magnitude of the reflection coefficient in
creases from 0 to 0.083 . . . . InFig. 4 it appears that as the wedg
angle increases from 180 deg to 360 deg, the phase of the t
mission coefficient increases from 0 deg to 270 deg, while
phase of the reflection coefficient increases from an appa
value of 90 deg to 270 deg.

The numerical results presented here are in good agree
with the corresponding results of Fujii@6#, except for the phase o
the reflection coefficient when the wedge angle is less than
deg. Over this range of wedge angles, the magnitude of the re

Fig. 4 Phase „in degrees … of the reflection and transmission
coefficients versus wedge angle „in degrees … for Poisson’s
ratio Ä0.25. The exact values for a 360-deg wedge are indicated
by an asterisk.
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tion coefficient is small. Also, when the method presented her
used to obtain numerical results for steel, good agreement is fo
with the corresponding results of Budaev and Bogg@9#, except for
the phase of the reflection coefficient. Note that in@6# and@7#, the
phase of the reflection and transmission coefficients are define
the negative of that used herein.
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Boundary Element Formulation
for Thermal Stresses During
Pulsed Laser Heating
Pulsed lasers are used in a variety of materials processing applications that range
heating for metallurgical transformation to scribing vehicle identification numbers
anodized aluminum strips. These lasers are commonly configured to deliver a large
tity of heat energy in very short time intervals and over very small areas due to
manner in which radiant energy is stored within, and then released from, the l
resonator. At the present time, little is known about the effect of pulse duration
thermomechanical distortion during heating without phase change. To explore this i
a boundary element method was developed to calculate temperature, displacemen
thermal stress fields in a layer that is rigidly bonded to an inert semi-space. The l
absorbs thermal energy from a repetitively pulsed laser in the plane of its free sur
The effects of two pulse durations, which differ by four-orders-of-magnitude, were e
ined in this work. The temporal profiles of ultrafast pulses of the order of ten picosec
(such as those emitted by a mode-locked laser), and pulses of the order of te
nanoseconds (such as those emitted by a Q-switched Nd:YAG laser) were mathem
modeled using a rectified sine function. The spatial profile of each pulse was shap
approximate a Gaussian strip source. The equations of coupled thermoelasticity, wh
the speed of mechanical distortion due to material expansion during heat absorpti
finite, but the speed of heat propagation within the layer is infinite, were solved for
pulse durations. The resulting temperature and stress fields were compared with
predicted in the limit of no thermomechanical coupling.@DOI: 10.1115/1.1365155#
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1 Introduction
Theoretical and experimental investigations of laser heating

materials, and resulting thermal stresses, began to appear i
literature not long after the first working laser was invented in
early 1960s~@1#!. Since that time, interest in the effects of bo
continuous wave and pulsed laser heating on the propertie
metals, ceramics, and semiconductors has been maintaine
part, by the rapid growth of the microelectronics industry. An e
increasing demand for improved material properties at smaller
smaller length scales has also created an incentive for contro
thermal stress levels through control of critical laser process
parameters such as power density, pulse repetition rate,
cycle, and depth of focus.

Absorption of radiant energy from a pulsed laser typically
sults in a very rapid rise in temperature in a material surface o
a very short time interval. Thermal stresses result due to the r
movement of heated material against the constraint of colder
beit deformable surrounding material. Thermomechanical ene
transport may occur through wave propagation~@2#!: This depends
upon the duration of each laser pulse and the efficiency w
which electrons in the material transfer radiant energy to the
rounding lattice~@3#!. If thermal stress levels are uncontrolle
during laser processing, then a variety of material and proc
related problems, such as crack nucleation and propagation~@4–
6#!, and undesirable microstructural transformations~@7,8#!, may
result. It is therefore useful to predict the thermal stress levels

1Currently at General Motors Research and Development Center, Mail Code
106-224, 30500 Mound Road, Warren, MI 48090-9055.

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, Ju
9, 2000; final revision, December 5, 2000. Associate Editor: A. K. Mal. Discuss
on the paper should be addressed to the Editor, Professor Lewis T. Wheeler, D
ment of Mechanical Engineering, University of Houston, Houston, TX 77204-47
and will be accepted until four months after final publication of the paper itself in
ASME JOURNAL OF APPLIED MECHANICS.
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arise during a laser processing application to establish guidel
for appropriate beam settings and to ultimately achieve des
material properties.

Theoretical studies of thermal stresses in laser processing
been directed toward a wide variety of applications and materi
For example, Welsh et al.@9# calculated thermal stresses in th
extreme cases of an elastic half-space and a thin film un
steady-state heating with a Gaussian laser source. Uglov e
@10# addressed the problem of predicting thermal stresses
metallic cylinder due to pulsed laser heating. The thermoela
response of a half-space subjected to volumetric heating by a
centrated heat flux for various values of absorption coefficient w
derived by Germanovich et al.@11#. Suh and Burger@12# devel-
oped a model to predict thermal stresses in aluminum plate
various thicknesses due to a high power Nd:YAG laser pu
Cohen et al.@13# calculated thermal stresses in thin films due
laser pulsing and developed a fatigue criterion based on the re
of their model. Fesenko@14# developed a model to predict therm
stresses due to a periodic, volumetric heat source in a rectang
prism and applied his model to understand the thermomechan
response of a potassium dihydrophosphate monocrystal. The
mal stress field in an elastic half-space due to a single pulse f
a laser was derived for the general case of a mixed-mode struc
beam by Hector and Hetnarski@15#. Solutions for thermoelastic
stress and displacement fields in thin films and thick layers
absorb thermal energy from a repetitively pulsed laser~with axi-
symmetric geometry! were reported by Kim et al.@16#. The
coupled solution of a two-dimensional domain subjected to th
mal shock from a laser source was studied by Tehrani and Es
@17#. None of these papers considered the effects of differ
pulse durations~either with or without coupling of the thermal an
mechanical fields! on predicted temperature and stress fields.

In the present paper, we calculate the thermal stresses i
elastic layer bonded to a thermomechanically inert semi-space
ing a boundary element formulation~see Kim et al.@16# for a
discussion of the technological significance of this problem!. The
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and
free surface of the layer absorbs thermal energy from a rep
tively pulsed laser in its surface plane. The energy equation,
equation of motion, are solved for the case of an ultrafast pu
train, wherein the pulse duration is of the order of ten picos
onds. These equations are also solved for a pulse duration w
is of the order of tens-of-nanoseconds in order to compare dif
ences in the material response due to the picosecond pulse
tion. A boundary element method is applied to the solution
these equations for the temperature, displacement, and stress
as functions of time and position assuming that the thermal
mechanical fields are coupled. Coupling of the thermal fields
due to finite transport of mechanical energy due to rapid abs
tion of thermal energy from the laser source followed by mate
expansion against colder surrounding material. Alternatively, h
transport is assumed to be infinite. Key differences in the la
displacements and stresses due to the picosecond and nanos
pulse trains are carefully examined both with and without c
pling.

2 Coupled Formulation
At t.0, the homogeneous, thermoelastic layer shown in Fig

is exposed to a thermal load from a repetitively pulsed laser.
layer extends from2`,y,`, and has a width,l, along the
positivex-direction. The layer is rigidly bonded to an inert sem
space alongx5 l . Heat from a constant frequency laser pulse tr
is absorbed in the plane of the free surface and instantaneo
diffuses throughout the material. The layer is assumed to be i
lated atx5 l .

In the absence of body forces and volumetric heat genera
the governing equations for dynamic, coupled thermoelasticity
the time domain may be written as

~l1m!uj ,i j 1mui , j j 2rüi2gT,i50 (1)

kT, j j 2rceṪ2gT0u̇ j , j50 (2)

where Eq.~1! is the equilibrium equation, Eq.~2! is the energy
equation, and a dot denotes time differentiation~@18,19#!. Note
that l, m are the Lame´ constants~@20#!; ui is the displacemen
vector which consists of two components, i.e.,u, the displacement
along the layer axis,x, and v, the displacement parallel to th
layer surfaces alongy; r, T5T(x,y,t),T0 ,k,ce are the mass den
sity, reference temperature, reference temperature, thermal
ductivity, and specific heat at constant strain, respectively. Eq
tions ~1! and ~2! are coupled through the stress-temperat
modulus,g, where

g5h~3l12m! (3)

andh is the coefficient of thermal expansion. The thermal bou
ary conditions are

Fig. 1 Layer subjected to thermal load from pulsed laser
Journal of Applied Mechanics
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T50 at t50 (4)

T5UsinS 2pt

tw
D UexpH 22.2S uyu

l D 3J at x50 (5)

]T

]x
50 at x5 l (6)

T50 at y→6` (7)

]T

]y
50 at y→0. (8)

The coupling of Eqs.~1! and~2! implies that heat absorbed in th
surface plane of the layer produces a longitudinal wave thro
dilatation: Material which lies ahead of the wave is in a state
compression, whereas material in the wake of the wave is
state of tension. Generation of the longitudinal wave dur
pulsed laser heating is strongly dependent upon the pulse dura
tw . Note that the energy equation does not include a ther
inertia term~i.e., T,tt) since the speed of heat propagation in t
layer is infinite. For pulse durations of the order of a few nan
seconds, the classical Fourier heat conduction model provide
most cases, an adequate approximation of the thermal field~@3#!.
However, for a pulse durations of the order of a few picosecon
it is likely that the thermal inertia term is important thereby r
quiring generalization of the equations of thermoelastic
~@21,22#!. Nevertheless, we shall ignore the thermal inertia te
for both pulse durations in order to reveal significant differenc
between the laser-irradiated material response as predicted b
present coupled and uncoupled formulations. Equation~5! repre-
sents the temperature profile on the free surface of the layer du
a repetitively pulsed laser: Thermal absorption into the surfac
assumed to be perfect~@23#!. It consists of an oscillatory tempora
profile and a Gaussian spatial component. The temporal profil
each pulse is assumed to follow a rectified sine function: T
profile approximates the nearly Gaussian temporal profile ass
ated with many pulsed solid state lasers~@24,25#!. Each pulse
achieves peak power att5tw/2. Note that each pulse is immed
ately activated following deactivation of the preceeding pul
The pulse duration and pulse train period are thus equivalent.
two-dimensional spatial profile of the beam is a Gaussian s
source since it consists of a Gaussian profile along they-direction
with no variation alongz for anyy. The surface temperature peak
alongy50. Clearly, this distribution differs from the more com
mon cylindrically symmetric mode structure associated with ma
laser beams. It is, however, similar to the oblong beam pro
emitted by repetitively pulsed excimer lasers~@26#!. Alternatively,
if a cylindrically symmetric laser beam is passed through a cy
drical lens, the output will resemble the spatial profile given
Eq. ~5! ~@27#!. Beam spreading methodologies of this type a
discussed in~@28#!. Note that the 2.2 ‘‘shape parameter’’ in Eq
~5! guarantees that the spatial component of the temperature
tribution approximates a Gaussian profile along they-direction.
Equation~6! states that the boundary alongx5 l is insulated.

The mechanical boundary conditions are

u5v50 at x5 l (9)

u5v50 at y→6` (10)

whereu5u(x,y,t) andv5v(x,y,t) are the displacement compo
nents along the positivex andy-directions, respectively, in Fig. 1

The time for heat to diffuse across the layer thickness is gi
by l 2/a wherea is thermal diffusivity. If

l 2

atw
!1 (11)

then heat conduction along the layer thickness is negligible
the layer can be treated as a thin film.
MAY 2001, Vol. 68 Õ 481
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It is convenient for the numerical calculations to introduce
following dimensionless variables:

x̂5
x

b
; ŷ5

y

b
; t̂5

tC1

b
; ŝ i j 5

s i j

gT0
ûi5

~l12m!ui

bgT0
;

T5
T2T0

T0
(12)

where

b5
a

C1
(13)

is a unit length, and the longitudinal or thermoelastic shock w
speed is given by

C15A~l12m!

r
. (14)

A wavefront appears if

l

C1tw
.1. (15)

Note that the layer thickness,l, can be written in terms of a di
mensionless thickness,L, through

l 5Lb. (16)

The dimensionless stress tensor is denoted byŝ i j 5ŝ i j (x,y,t).
The dimensionless forms of Eqs.~1! and ~2! are

S m

l12m Dui , j j 1S l1m

l12m Duj ,i j 2T,i2üi50 (17)
n
d

482 Õ Vol. 68, MAY 2001
he

ve

T, j j 2Ṫ2Cu̇j , j50 (18)

where for convenience we have dropped the hat notation in E
~16! and~17!. The dimensionless coupling coefficient is defined

C5
T0g2

rce~l12m!
. (19)

Transferring Eqs.~17! and ~18! to the Laplace transform domai
yields

S m

l12m Dui , j j 1S l1m

l12m Duj ,i j 2T,i2s2ui50 (20)

T, j j 2sT2Csuj , j50 (21)

wheres is the Laplace transform variable due to transformat
with respect to the time variable. Note that the transformed fu
tions could be written asui* andT* ~for example! so as to distin-
guish them from their counterparts in the physical domain. W
elected to retain the same notation for these functions as use
the physical domain since we will shortly bring them back to th
domain through numerical inversion. Equations~20! and~21! can
be written in matrix form as

Q i j U j50 (22)

where

Ui5@U V T#. (23)

For a two-dimensional domain, the operatorQ i j reduces to
Q i j 5F S m

l12m DD1S l1m

l12m DD1
22s2 S l1m

l12m DD1D2 2D1

S l1m

l12m DD1D2 S m

l12m DD1S l1m

l12m DD2
22s2 2D2

2sCD1 2sCD1 D2s

G (24)
tor
ce-

sor,
ntal
riva-
ion
whereDi5]/]xi for ( i 51,2) andD denotes the Laplacian.
In order to derive the boundary integral problem, we start w

the following weak formulation of the differential equation se
Eqs.~22!, for the fundamental solution tensorVik* ;

E
V

~Q i j U j !Vik* dV50. (25)

After integrating by parts over the domain and taking a limiti
procedure with which an internal source approaches a boun
point, we obtain the following boundary integral equation:

Ck jUk~y,s!5E
G
@te~x,s!Ve j* ~x,y,s!2Ue~x,s!Se j* ~x,y,s!#dG~x!

1E
G
@T,n~x,s!V3 j* ~x,y,s!

2T~x,s!V3 j ,n* ~x,y,s!#dG~x! (26)

whereUe5ue(e51,2), U35T andCk j denotes the shape coeffi
cient tensor. The kernelSe j* in Eq. ~26! is defined by
ith
t,

g
ary

-

Se j* 5F H S l

l12m DVk j ,k* 1sCV3 j* J deb1
m

l12m
~Va j ,b* 1Vb j ,e* !Gnb

~27!

wherenb is a component of the unit outward normal vector,n to
the boundary. The first through fourth terms in Eq.~26!, represent,
respectively, contributions from the product of the traction vec
and the fundamental solution tensor, the product of the displa
ment vector and the derivative of the fundamental solution ten
the product of the derivative of temperature and the fundame
solution tensor, and the product of the temperature and the de
tive of the fundamental solution tensor. The fundamental solut
tensor must satisfy the following differential equation:

u i j Vjk* 52d ikd~x2y! (28)

whered(x2y) is the delta function andu i j is the adjoint operator
of Q i j in Eq. ~22!. This is given by
Transactions of the ASME



u i j 5F S m

l12m DD1S l1m

l12m DD1
22s2 S l1m

l12m D D1D2 2sCD1

S l1m

l12m D D1D2 S m

l12m D D1S l1m

l12m D D2
22s2 2sCD2

2D1 2D2 D2s

G . (29)
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3 Fundamental Solution
In order to construct the fundamental solution, we express

fundamental solution tensor,Vi j* , from Eq.~28!, in the following
potential representation by using the transposed co-factor ope
m i j of u i j and scalar functionF* ~@29#!:

Vi j* ~x,y,s!5m i j F* ~x,y,s!. (30)

After substitution of Eq.~30! into Eq. ~28!, we get the following
differential equation:

LF* 52d~x2y! (31)

where

L5det~u i j !5
m

l12m
~D2h1

2!~D2h2
2!~D2h3

2! (32)

and thehi
2 are the solutions of

h1
25S l12m

m D s2

h2
21h3

25s21s~11C!

h2
2h3

25s3. (33)

Note thath1 is the longitudinal wave velocity,h2 is the shear
wave velocity,h3 is the rotational wave velocity, and

F* 5S l12m

2pm D F K0~h1r !

~h2
22h1

2!~h3
22h1

2!
1

K0~h2r !

~h3
22h2

2!~h1
22h2

2!

1
K0~h3r !

~h1
22h3

2!~h2
22h3

2!G . (34)

HereK0 , K1 , andK2 are modified Bessel functions of the seco
kind of zero, first, and second-order, respectively~@30#!. The com-
ponents of the fundamental solution tensor,Vi j* , for the two-
dimensional domain in Fig. 1, are as follows:

Vef* 5(
k51

3

~ck~r !def2kkr ,er ,f! ~e,f51,2! (35)

V3e* 5(
k51

3

j́k~r !r ,e (36)

Ve3* 5(
k51

3

jk~r !r ,e (37)

V33* 5(
k51

3

zk~r ! (38)

where
Journal of Applied Mechanics
the

ator

d

ck~r !5
Wk

2p F ~hk
22m2!~hk

22m1!1S l1m

m D
3H hk

22m1S 11S l12m

l1m DCD J hk
2GK0~hkr !

1
Wk~l1m!

2pm Fhk
22m1S 11S l12m

l1m D CD G hk

r
K1~hkr !

(39)

kk~r !5
Wk~l1m!

2pm Fhk
22m1S 11S l12m

l1m DCD GK2~hkr !

(40)

j́k~r !5
Wk

2p Fhk
22S l12m

m D s2GhkK1~hkr ! (41)

jk~r !5
Wk

2p Fhk
22S l12m

m D s2GhksCK1~hkr ! (42)

zk~r !5
Wk

2p Fhk
22S l12m

m D s2G~hk
22s2!K0~hkr ! (43)

and

r 5ix2yi ; m15s; m25S l12m

m D s2;

Wi5
21

~hi
22hj

2!~hk
22hi

2!

~ i 51,2,3 j 52,3,1 k53,2,1!. (44)

In order to solve Eq.~26!, the standard boundary element proc
dure may be applied~@31#!. When transformed numerical solu
tions are specified, transient solutions may be obtained using
appropriate numerical inversion technique. In this paper,
method presented by Durbin@32# is adopted for numerical inver
sion in the time domain.

4 Results and Discussion
We examine the influence of thermoelastic coupling due to

applied surface temperature in Eq.~5!. We consider two values o
pulse duration,tw , for pulsed laser heating of a pure aluminu
layer where E5631010 Pa, n50.33, r52650 kg/m3, and a
59.431025 m2/sec ~extrapolated close to the melting temper
ture from @33#!. Hence, the velocity of the longitudinal wave i
aluminum isC155792 m/sec. We must ensure that the layer c
terion given by Eq.~11! is maintained. For the shorter of the tw
pulse durations, we choosetw58.5310212 sec or t̂ w53. We set
l 510b: this givesl 50.1631026 m, L510 and

l 2

atw
533. (45)

The time for the longitudinal wave to travel across the layer thi
ness is 27.6310212 sec. Hence, the pulse duration is less th
three times the time required for the thermoelastic wave to pro
gate from the free surface to the bonded surface of the la
Equation~15! implies that a longitudinal wave will be generate
MAY 2001, Vol. 68 Õ 483
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within the layer. For the longer of the two pulse durations,
choose tw58531029 sec ~which is four-orders-of-magnitude
longer than the shorter pulse duration! or t̂ w530,000. We setl
5200b: this givesl 53.2431026 m, L5200 and

l 2

atw
51.34. (46)

The time for the longitudinal wave to travel across the layer thi
ness in this case is 5631029 sec. Hence, the pulse duration is 15
times longer than the time it takes for the longitudinal wave
travel from the free surface to the bonded surface. Equation~15!
implies that no longitudinal wave will be generated within t
layer. The picosecond pulse duration is common to mode-loc
Nd:YAG lasers~@24#!, whereas the nanosecond duration is co
mon to Q-switched Nd:YAG lasers~@25#!. Note that both of these
pulse durations are considerably shorter than that addresse
Kim et al. @16#. In that paper, the pulse duration was of the ord
of 1024 sec. All quantities reported in the following figures are
terms of dimensionless variables defined by Eqs.~12!: We have
dropped the hat notation for convenience.

The temperature versus time profile due to the shorter of
two pulse trains is shown in Fig. 2. This consists of four pulse
x5y50. The dimensionless peak power per pulse delivered to
surface,Pp , has been arbitrarily set to one. Peak power in
pulse train is delivered to the surface of the layer at timestp

N ,
where

tp
N5

3~2N21!

2
(47)

andN is the pulse number~for example,N53 for the pulse that is
activated att56). The average power,Pa , is

Pa5
Pp

tw
E

0

twUsinS 2pt

tw
D Udt5

2Pp

p
50.64. (48)

Note that we selected four pulses since this was deemed t
adequate for purposes of discerning differences between the s
and displacement fields due to the coupled and uncoupled s
tions.

Figure 3 compares the temperature evolution, at specific de
within the layer, due to the uncoupled (C50) and coupled (C
50.3) formulations for 0<t<12. The uppermost curves~solid
and dotted! show the temperature evolution atx50.3L, y50.2L.
The lower two curves~dashed and dot-dashed! show the tempera-
ture evolution atx50.6L, y50.2L. The dimensionless quantitie
were selected in such a way that the thermoelastic shock fro
x50.3 L occurs at timet53, and that atx50.6 L occurs at time

Fig. 2 Thermal load due to laser pulse train at xÄyÄ0
484 Õ Vol. 68, MAY 2001
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t56. It is immediately apparent that the mean value of tempe
ture atx50.6 L is much lower than that atx50.3 L. The curves
corresponding tox50.3 L, y50.2 L show four crests in the tem
perature distribution. A comparison of Figs. 2 and 3 shows t
each crest due to the uncoupled solution appears near to the
when the corresponding laser pulse that produced it is comple
deactivated~i.e., t53, 6, 9, 12!. However, each crest due to th
coupled solution occurs during the time when the correspond
laser pulse that produced it is in the process of deactivation.
coupled solution predicts more extreme temperature fluctuat
in the layer since the crest to trough deviations in the tempera
profile between successive pulses exceed those predicted b
uncoupled formulation. The curve corresponding to the coup
solution atx50.6 L, y50.2 L shows three temperature crest
whereas that corresponding to the uncoupled solution show
continuous increase in temperature. It is interesting to note tha
C50.3, the maximum temperature due to the third pulse occ
just beforet512. As seen in Fig. 2, this corresponds to the tim
when the fourth pulse is deactivated. Clearly, the coupled solu
is more sensitive to the temporal pulse profile than the uncoup
solution. Also, the pointx50.6L, y50.2L is deep enough within
the layer so that the temperature has not significantly increa
there by the time the fourth pulse is delivered to the surface.
additional pulses beyond the four shown in Fig. 2 are delivered
the layer surface, the insulated boundary will play a more imp
tant role in the temperature profile since the thermoelastic sh
front will be reflected from this boundary. The temperatures w
begin to increase, with the coupled solution continuing to sh
greater crest-to-trough deviations than those predicted by the
coupled solution. Eventually, the surface will melt and/or abla
resulting in different modes of thermal transport within the lay
At this point, however, the present model would have to be mo
fied to account for the propagation of a phase change front. A
final note on Fig. 3, the shape of the curves for the coupled s
tion may in fact be subject to further scrutiny since thermal tra
port at such short pulse widths is a wave phenomena. Car
examination of this issue would require solution of the pres
problem with the generalized dynamical theory of thermoelas
ity wherein both the thermal and mechanical disturbances
characterized by finite wave speeds~@22#!.

Figures 4 and 5 show the evolution of the axial displacemenu,
and the lateral displacement,v ~i.e., parallel to the surfacex
50), respectively, for 0<t<12. In Fig. 4, the curves are groupe
according to the curves in Fig. 3 and compare differences betw
the coupled and uncoupled solutions. Atx50.3L, y50.2L ~solid
and dotted curves!, the material response to the first pulse is
inward ‘‘bulging’’ ~up to t53.5) since a positive displacement,u,
follows the positivex-axis into the layer. This suggests that th
axial stress is compressive. The displacement,u, changes sign at

Fig. 3 T versus t , at yÄ0.2 L , for t wÄ3
Transactions of the ASME



e
d

a

u
l

r
e

o

g

r
t

ria-

for
the
nts,
ose
ro-

pled

he
s

ses

3
aks
. This
ent
the

tion
t54.6, at which point the surface bulges outward. This sugg
that the axial stress becomes tensile. As the material respon
the second pulse between 5.3<t<8.3, the surface again bulge
inward ~but only by a very small amount! and then continuously
bulges outward beyondt57.2. A similar behavior is noted for the
two curves corresponding tox50.6 L, y50.2 L, except that the
amplitude of the inward bulge at the first crest exceeds thatx
50.3 L, y50.2 L. The coupled solution noticeably differs from
the uncoupled solution atx50.6 L, y50.2 L in that it tends to
predict a less extreme variation in the axial displacement. Clea
the coupled solution shows little difference between the
coupled solution atx50.3 L, y50.2 L, and hence longitudina
wave propagation has little effect there. However, the same is
true for the deeper lying point atx50.6 L, y50.2 L which is
closer to the bonded interface. The reversal of sign in the cu
of Fig. 4 results from layer deformation in response to the v
short pulse duration. This behavior was not predicted Kim et
@16# since the axial displacement was found to be compressive
all time. This prediction is consistent with experiments by App
lonov et al.@34#, in which a continuous wave CO2 laser beam was
used to demonstrate outward bulging of a sapphire surface. Fi
5 shows that the lateral displacement is always outward from
point x5y50. Note, however, that the displacement atx50.3 L,
y50.2 L is always greater than that atx50.6 L, y50.2 L: This is
independent of the coupling constant,C. This reveals a behavio
that differs from that shown in Fig. 4 due, for the most part, to
absence of a rigid boundary constraint along they-direction. The
curves corresponding tox50.3L,y50.2L show only the tops of

Fig. 5 v versus t , at yÄ0.2 L , for t wÄ3

Fig. 4 u versus t , at yÄ0.2 L , for t wÄ3
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the crests that result from the pulses in Fig. 2. The temporal va
tion of the pulse train profile is thus smeared out~for the most
part! in the lateral displacement. Atx50.6L,y50.2L, however,
the response to the first two pulses is slightly better developed
the coupled solution, although any hint of the pulse shape in
corresponding uncoupled solution is smeared out. At both poi
the coupled solution predicts smaller displacements than th
predicted by the uncoupled solution. This effect is most p
nounced at longer times in the process.

Figures 6–8 show the evolution of the axial stress,sxx , lateral
stress,syy , and shear stress,sxy , respectively, over the time
frame considered in Figs. 4–5. Each figure compares the cou
and uncoupled stresses atx50.3L, y50.2L and x50.6L, y
50.2L.

In Fig. 6, the minima in the two curves for whichC50 fall at
the times when the longitudinal wave passes the pointsx50.3L
and 0.6L ~longitudinal wave propagation has no meaning for t
uncoupled formulation!. The same is not true for the two curve
corresponding toC50.3. The most extreme compressive stres
occur just before the longitudinal wave passesx50.3L and 0.6L.
At x50.3L,y50.2L, the material is in a state of tension for
<t<6 since the wave att53 has passed. The tensile stress pe
at t54.8, and then decreases as the second wave approaches
behavior is consistent with the behavior of the axial displacem
shown in Fig. 4. Similar observations can be made about
curves corresponding tox50.3L,y50.2L. At both points within
the layer, the coupled solution predicts an axial stress varia

Fig. 6 sxx versus t , at yÄ0.2 L , for t wÄ3

Fig. 7 syy versus t , at yÄ0.2 L , for t wÄ3
MAY 2001, Vol. 68 Õ 485



e

d
r
t

s

e

n
s

i

s

t
o
F
e
s

eak
es
ves

that
m-
the
that is less extreme than that predicted by the uncoupled solu
once the shock front has passed. Of the cases considered in F
the most extreme tensile stress was found to occur atx50.6L.
Note that the wavefronts are not perpendicular to the time a
since heat is not instantaneously released into the material~this
would require a delta function in the surface temperature bou
ary condition~Eq. ~5!!.

Figure 7 shows that the lateral stress,syy , is compressive
~other than a small excursion into the tensile region att56) from
the onset of laser irradiation. The origin of the compressive lat
stress is the sudden expansion of heated material against co
albeit deformable substrate material that surrounds the heate
gion. Note that the coupled solution predicts that the lateral st
is less compressive than that predicted by the uncoupled solu
Of the cases considered in Fig. 7, the most extreme compres
stress was found to occur atx50.3L. Note that the axial stres
and displacement profiles~Figs. 4 and 6! tend to vary according to
the pulse train profile. However, this is not the case with Figs
and 7 for the lateral stress and displacement profiles: While
former denotes very little of the pulse train profile, the latter ten
to display the characteristic rise and decay of the pulses deliv
to the surface.

Figure 8 shows that the shear stress,sxy , crests atx50.3L,
y50.2L, andx50.6L, y50.2L, respectively, a short time afte
the first and second pulses have been deactivated. The sign o
shear stress thus changes some time after the passage of the
moelastic shock front. Note that the shear stress distributio
necessarily complicated since it is influenced by the variation
sxx andsyy as well as the bonded interface atx5L. For example,
the shear stress atx50.6L is nearly constant between the cres
due to the second and third pulses, i.e., 8<t<10. The coupled
solution predicts smaller values of the shear stress than those
dicted by the uncoupled solution. This difference becomes m
apparent with increasing time.

Figures 9–13 explore the response of the layer material to
tw530,000 pulse duration atx50.3L, y50.2L, and x50.6L,
y50.2L. For this purpose, we define a new dimensionless t
variable,t8, where

t8510 000t. (49)

Each figure is considered over the 0<t8<12 time interval.
Figure 9 compares the temperature evolution, at depthx

50.3L andx50.6L, due to the uncoupled (C50) and coupled
(C50.3) formulations. Note that the differences between
coupled and uncoupled solutions are substantially smaller c
pared with those due to the ultrafast pulse train displayed in
3. At both depths, the coupled solution predicts a slightly l
extreme temperature profile. Atx50.3L, the temperature peak

Fig. 8 sxy versus t , at yÄ0.2 L , for t wÄ3
486 Õ Vol. 68, MAY 2001
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close to the time when the corresponding pulses achieve p
power. At x50.6L, the temperature achieves its extreme valu
midway between the time when the corresponding pulse achie
peak power and when it is deactivated. It is interesting to note
while the temperature maxima differ at the two depths, the te
perature minima are roughly equivalent. This was clearly not

Fig. 9 T versus t 8, at yÄ0.2, for t wÄ30,000

Fig. 10 u versus t 8, at yÄ0.2, for t wÄ30,000

Fig. 11 v versus t 8, at yÄ0.2 L , for t wÄ30,000
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case in Fig. 3. Based upon the results in Fig. 9, it is clear
thermoelastic coupling is much more important for thetw53
pulse duration.

Figures 10 and 11 show, respectively, the evolution of the a
and lateral displacement fields. In Fig. 10, the four trough regi
occur in response to heat absorbed from the four pulses deliv
to the free surface of the layer. Unlike the inward and outw
bulging behavior due to thetw53 pulse duration~see Fig. 4!, the
layer surface only bulges outward in response to thetw530,000
pulse duration. The coupled solution predicts that the maxim
outward displacement of the layer surface is less than that
dicted by the uncoupled formulation: The extreme values occu
t852.7, 5.6, 8.5, and 11. However, as the displacement decre
~in response to deactivation of the corresponding pulse!, thereby
implying a reduction in the outward bulging, the coupled soluti
tends to cross-over the uncoupled solution. When the amplitud
the bulge drops to its smallest value~i.e., at the least negative
values of displacement!, the uncoupled solution predicts th
smallest bulge amplitude. Hence, the extreme shapes of
bulged material are predicted to be smaller by the coupled for
lation. Figure 11 shows that the coupled and uncoupled solut
for the lateral displacement differ insignificantly in response to
first two pulses. Extreme values during this time occur att8
52,5. Like that predicted for thetw53 pulse duration in Fig. 5,
the lateral displacement is outward from the center of the laye
y50. As the material responds to the third and fourth pulses,
oscillatory behavior of the lateral displacement becomes m

Fig. 12 sxx versus t 8, at yÄ0.2 L , for t wÄ30,000

Fig. 13 syy versus t 8, at yÄ0.2 L , for t wÄ30,000
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complicated. The uncoupled solution predicts that the crests in
lateral displacement ‘‘split,’’ while this behavior tends to b
smeared out by the coupled solution. The greatest differences
tween the two solutions occur att857.5,10.5. The splitting of the
third and fourth crests of the lateral displacement profile illustra
a fundamental difference between the material response to
nanosecond and picosecond pulse trains. For the nanose
pulse train, the material tends to develop a vibration or ela
‘‘spring’’ along the y-direction due to substantial expansio
against the colder regions that surround the region exposed b
beam. Some indication of this is also seen in Fig. 10. For
picosecond pulse train, however, this behavior is not obser
~see Fig. 5! since the effect of thermoelastic coupling is mu
more important and the average value of the displacement at
depths is considerably smaller than that for the longer pulse d
tion. The time scale for heat absorption and diffusion is consid
ably shorter for the picosecond pulse train and hence the mat
does not displace along they-direction to the extremes that occu
during exposure to the nanosecond pulse train.

Figures 12 and 13 show the evolution of the axial stress,sxx ,
and lateral stress,syy , respectively, over the same time fram
considered in Figs. 10 and 11. Each figure compares the cou
and uncoupled stresses atx50.3L, y50.2L and x50.6L, y
50.2L. Note that Figs. 10 and 12 show oscillatory behavior
the displacement and stress components along the layer ax
similar observation can be made relative to Figs. 11 and 13. M
mum tensile stresses along the layer axis occur att852.3, 5.3, 8.3,
and 11.3 in Fig. 12. Maximum compressive stresses parallel to
free surface of the layer also occur at these times according to
13. The key difference between Fig. 6 and Fig. 11 is that
changeover in stress from compressive to tensile along the a
direction due to thetw53 pulse duration is not predicted for th
tw530,000 pulse duration. The stress due to thetw530,000 pulse
duration is always tensile along the layer axis. Note that
coupled solution predicts a smaller tensile stress than is predi
by the uncoupled solution in both Figs. 6 and 11. For the late
stress,syy , the uncoupled formulation shows more extreme co
pressive values than are predicted by the coupled formulation

In the present model, we have assumed that the material
not melt or evaporate during the laser heating process. Thi
course has limited our discussion to heating without phase cha
and the thermal stress field that results in the material. Si
pulsed lasers are commonly use to scribe and evaporatively
materials in many industrial processes~@35,36#!, some comment
on the extent to which the temporal pulse widths considered in
present paper might result in ablation of a representative mat
are worthwhile. For this purpose, we choose to examine pure
minum metal, and will therefore neglect the fact that all aluminu
surfaces consist of an amorphous natural oxide layer which is
nm deep~@37#!. An estimate of ablation depth,d, ~which is useful
for the purpose of preliminary process design! following delivery
of a single pulse of temporal width,tw , is given by the following
lumped heat capacity expression~@28#!:

d5
twf

r@cp~Tv2Ti !1Lv#
. (50)

We assume that all quantities in Eq.~50! are dimensional. Note
that f is the absorbed power density,cp is the heat capacity,Tv is
the vaporization temperature,Ti is the initial temperature of the
material, andLv is its vaporization temperature. In writing Eq
~50!, we have assumed that all material properties
temperature-independent, the laser pulses do not couple to eje
material or beam plasma~and hence nonlinear optical process
are neglected~@38#!!, and ablated material is removed instant
neously with no melting and subsequent fluid flow due to th
mocapillary effects~@39#!. The absorbed power density,f, is re-
lated to the peak power per pulse,Pp , via
MAY 2001, Vol. 68 Õ 487
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(51)

whereine is the absorption coefficient~or fraction of the incident
radiation that is absorbed by the surface!, Fp is the peak power
density per pulse, andA is the beam exposure area on the surfa
Note thatf contains information about the optical properties of t
surface material as well as the surface microgeometry~which may
adversely affect beam absorption due to scattering!. Aluminum
metal will, if polished to a mirror finish, reflect the majority o
incident light energy at the near infrared wavelength of 1.0mm
emitted by pulsed Nd:YAG lasers. Under these conditions,
assume that only five percent of the incident light energy from
single pulse is absorbed in the surface plane of the metal.
further consider the case where each pulse carries a peak pow
20,000 W and irradiates a 0.5 mm2 area. For aluminum initially at
room temperature, we havecp5900 J/kg°C, Tv52450°C, Ti

525°C, andLv59492 J/kg ~@28#!. For tw58531029 sec, Eq.
~50! givesd529 nm, and hence after four pulses, the total ab
tion depth would be 117 nm. For the shorter pulse duration
8.5310212 sec, Eq.~50! gives d50.002 nm. Clearly, ablation
will be more of a concern with the longer of the two pulse tra
considered in this paper~provided of course that power losses d
to nonlinear optical phenomena, such as beam coupling to
plasma, and melting are ignored!. For more detailed information
on the relationship of pulse power density to phase change
cesses resulting from pulsed laser irradiation of metals, the in
ested reader is referred to Hector and Sheu@40#.

5 Concluding Remarks
Temperature, displacement, and thermal stress fields due to

absorption from pulses with temporal and spatial profiles t
emulate pulse trains emitted by common materials processin
sers were calculated with a boundary element formulation.
temporal profile of the pulse train was modeled with a rectifi
sine wave, while the spatial profile was modeled as a Gaus
strip source. The thermal and mechanical fields predicted un
the assumption of thermomechanical coupling were compa
with those calculated assuming no coupling. Both nanosecond
picosecond pulse durations of 8531029 sec and 8.5310212 sec,
respectively, were considered. In the case of the picosecond p
duration, the layer thickness was adjusted so that the pulse d
tion was less than three times the time required for the th
moelastic wave to propagate from the free surface to the bon
surface of the layer. For the case where the thermal and mech
cal fields are coupled, this led to the propagation of a longitud
wavefront along the axis of the layer due to the dilatational eff
of heat absorption from the laser pulse train. This front leave
compressive stress field in its wake. On the other hand, the l
thickness associated with the 8531029 sec pulse duration wa
adjusted so that the pulse duration was 150 times longer than
time required for the longitudinal wave to travel from the fr
surface to the bonded surface. Examination of the stress and
placement fields demonstrated that differences between
coupled and uncoupled solutions were significant for the
310212 sec. However, the uncoupled solution was sufficient
the 8531029 sec. An additional effect, which is best described
a thermoelastic springing of the material, was noted in the sp
ting of the crests associated with the lateral displacement field
to the 8531029 sec pulse duration. This was not observed in
analogous displacement profile due to the picosecond pulse t

Current modeling efforts associated with thermomechanical
fects in laser-irradiated materials are focused on examinatio
the conditions under which a thick layer will delaminate from
deformable substrate. This is an important design issue for m
industrial applications in which a coated mechanical componen
exposed to repetitive thermal loading from a pulsed laser. For
purpose, the present model is being reformulated to account fo
elastic, conducting substrate. In addition, concepts from solid s
488 Õ Vol. 68, MAY 2001
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physics are being incorporated into an extension of the pre
model which includes the thermal inertia term for ultrafast la
heating and related nonlinear optical effects. This will establis
link between electronic conduction due to heat absorption o
very short time intervals and the resulting material deformatio
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Rapid Indentation of Transversely
Isotropic or Orthotropic
Half-Spaces
The canonical problems of rapid indentation by, respectively, a rigid smooth wedge
a rigid smooth cylinder, are examined for a transversely isotropic or orthotropic h
space in plane strain. An exact transient analysis based on integral transforms is ca
out for the case of contact zone expansion at a constant subcritical rate. Certain func
in the transform space can be factored in such a manner that the resulting solut
despite anisotropy, have rather simple forms. This factorization is also exploited to o
a compact exact formula for the Rayleigh wave speed, which serves as the critical co
zone expansion rate. Aspects of contact zone behavior for the two problems are illus
for five specific materials.@DOI: 10.1115/1.1365154#
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Introduction
Indentation of elastic solids is a key problem in contact m

chanics~@1#!. For the static case, much is known about the form
lation of relevant boundary value problems~@2#! and classes of
exact solutions~@3,4#!. An extensive literature for anisotropic so
ids also exists, e.g.~@5–7#!. Results for transient dynamic inden
tation are not as common, and studies of isotropic solids,
~@8–10#!, predominate. A recent survey of anisotropic work~@11#!
is available, although general formulas for the contact process
a primary focus.

In this light, the present article considers an exact trans
analysis of indentation of a transversely isotropic or orthotro
linearly elastic half-space. The canonical situations of indenta
by, respectively, a rigid smooth wedge and a rigid smooth cy
der are treated. The shapes imply deformations in plane st
and, as a first step, the material symmetry axes are normal
tangential to the half-space surface and expansion of the co
zone is at a constant subcritical rate.

The analysis begins in the next section with the basic equat
for the material, and identification of the related problem of ar
trary tractions applied to the half-space surface. The exact inte
transform solution to the problem is obtained, and serves as
basis for construction of the indentation problem solutions.

Key steps in the analysis are factorizations of certain functi
of the transform variable that give, despite the material anis
ropy, rather simple expressions for the transform of the nor
displacement of the half-space surface. Indeed, one of the fa
is extracted from a function of the Rayleigh type, and allows
compact exact formula for the Rayleigh wave speed along
surface. To illustrate solution behavior, contact zone variat
with indentation motion parameters is examined in the two ca
for five specific materials~@12#!.

Basic Problem
Consider a half-space, defined in terms of Cartesian coordin

(x,y,z) as the regiony.0, initially at rest. The half-space mate
rial is of a class of linear homogeneous anisotropic solids wh
nontrivial governing equations in plane strain in the absence
body forces have the form
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with the associated stress-strain formulas
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1c13

]uy

]y
(2a)

syy5c13

]ux

]x
1c33

]uy

]y
(2b)

sxy5syx5c44S ]uy

]x
1

]ux

]y D . (2c)

These equations hold for both orthotropic and transversely iso
pic materials, where thex andy-axes are axes of material symm
try. The (ux ,uy) are the (x,y)-components of displacement, an
are functions of (x,y) and time, where~•! denotes time differen-
tiation. The constants (c11,c13,c33,c44) are a subset of the elas
ticities cik( i ,k51,2, . . . ,6)that appear in the generalized Hooke
law ~@13#!, andr is the mass density. Equations~1! are a special
case of a more general form that involves four constants that
be linearly related to various subsets ofcik . In addition to the
anisotropies considered here, that form describes the plane-s
response of materials with various types of crystal structure~@14#!.
Overviews of the general relation between crystal structure
the cik can be found in~@15,16#!.

The subset considered in~1! and~2! are constrained to guaran
tee either a positive-definite strain energy function or strong e
ticity. The former is generally more restrictive than the latt
which itself guarantees real nonzero wave speeds, and guara
solution uniqueness. Its restrictions are

c11.uc12u, ~c111c12!c33.2c13
2 , c44.0. (3)

The isotropic limit case can be extracted by setting

c115c335l12m, c125c135l, c445m (4)

where~l,m! are the Lame’ constants~@13#!.
For convenience, the dimensionless quantities~@12#!

a5
c33

c44
, b5

c11

c44
, g511ab2m2, m511

c13

c44
(5)

and the temporal variables5v r3(time), where
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are introduced, so that the independent variables (x,y,s) all have
the dimensions of length, and~1! and ~2! become

b
]2ux

]x2 1
]2ux

]y2 1m
]2uy

]x]y
5

]2ux

]s2 (7a)

]2uy

]x2 1a
]2uy

]y2 1m
]2ux

]x]y
5

]2uy

]s2 (7b)

1

c44
sxx5b

]ux

]x
1~m21!

]uy

]y
(7c)

1

c44
syy5~m21!

]ux

]x
1a

]uy

]y
(7d)

1

c44
sxy5

1

c44
syx5

]uy

]x
1

]uy

]x
. (7e)

Equation ~6! defines a speed that, in the isotropic limit, is t
classical~@17#! rotational wave speed. For purposes of illustratio
we consider in view of~3! the following constraints~@12#! on
~a,b,g!:

2Aab<g<11ab ~1,b,a! (8a)

a1b<g<11ab ~1,a,b! (8b)

2a<g<11a2 ~1,b5a!. (8c)

The class of anisotropic materials governed by~8! includes beryl,
cobalt, ice, magnesium, and titanium, as well as the isotro
limit.

For s.0 the half-space surface is subjected to the tract
boundary conditions

syy5s~x,s!, syx5t~x,s! (9)

for y50. Here~s,t! are largely arbitrary, but must be continuou
and bounded almost everywhere, i.e., integrably singular beha
is allowed at isolated points. The initial conditions fory.0 are

S ux ,uy ,
]ux

]s
,
]uy

]s D[0 ~s<0! (10)

and it is expected that (ux ,uy) are bounded and continuous fo
y.0 when s.0 is finite. The related Boussinesq problem
treated in~@12#!. However, the role of the basic problem here
the dynamic indentation study, and manipulations that are con
nient for that purpose, suggest that the solution process be br
outlined.

Transform Solution
Consider the unilateral~@18#! and bilateral ~@19#! Laplace

transforms

F̂5E
0

`

F~s!e2psds, (11a)

F̃5E
2`

`

F̂e2pqxdx (11b)

and their corresponding inverse operations

F~s!5
1

2p i E F̂epsdp, (12a)

F̂5
p

2p i E F̃epqxdq (12b)
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In ~11a,b! p can be treated as real and positive, whileq is imag-
inery. Integration in~12a,b! is over the Bromwich contours in the
p andq-planes, respectively.

Application of ~11a,b! to ~7a,b! in light of ~10! gives the gen-
eral transform expressions

ũx5C1e2pay1
1

mqb
~ab22B2!C2e2pby (13a)

ũy5
1

mqaa
~aa22A2!C1e2pay1C2e2pby (13b)

for y.0, where (C1 ,C2) are undetermined functions of (p,q)
and

A5AaA12bq2, B5A12q2 (14a)

A2aa5AS2AS224A2B2, A2ab5AS1AS224A2B2

(14b)

S5A21B21m2q2511a2gq2, aab5AB. (14c)

It can be shown~@12#! that ~8! guarantees that the branch poin
q56(1,1/Ab) of (B,A) lie on the Re(q)-axis, and also constitute
branch points for (b,a). Boundedness of~13! for y.0 requires
that Re(A,B,a,b)>0 in the cutq-plane. Application of~11a,b! to
~9! in view of ~10! and ~13! allows the coefficients to be deter
mined as

c44pR

mqaa
C152@~m21!B21ab2#qt̃2~B22ab21mq2!bs̃

(15a)

c44pR

mqb
C252@~m21!aa21A2#qs̃1~B22ab21mq2!aat̃

(15b)

R5@~m21!aa21A2#@~m21!B21ab2#q2

1~B22ab21mq2!2AB. (15c)

In the sequel, the normal displacement alongy50 is required, and
so ~13! and ~15! are combined to yield

ũx5
aaN1

R

t̃

c44p
2

qM

R

s̃

c44p
, (16a)

ũy5
bN2

R

s̃

c44p
1

qM

R

t̃

c44p
(16b)

for y50, whereR is given by~15c! and

M5~A22aa2!@~m21!B21ab2#1~B22ab21mq2!mAB
(17a)

N15~B22ab2!21m2q2B2, (17b)

ab2N252A2N1 (17c)

In the isotropic limit, c445m, a5b511m, g52(11m) and
~16a,b! reduce to forms

ũx52
bo

Ro

t̃

mp
2

No

Ro

s̃

mp
, ũy52

ao

Ro

s̃

mp
1

No

Ro

t̃

mp
(18)

that are consistent with those found in~@20#!. In ~18!

ao5A 1

11m
2q2, bo5A12q2 (19a)

No52~q21aobo!21, Ro54q2aobo1~2q221!2 (19b)

whereRo is a form ~@17#! of the Rayleigh function.
To aid in the transform inversion process, some simplificatio

of ~16! are made: First,~14b! gives the quantities

d65Aa~b6a!5AS62AB (20)
MAY 2001, Vol. 68 Õ 491
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and it follows thata25b2 whend650, i.e.,

q25
g~11a!22a~11b!6 i2mAaAg2a2b

g224ab
. (21)

In view of ~8! the denominator and, in the numerator, the r
term and second radical in the imaginary term, are positive
vanish in the isotropic limit. However, the imaginary term itse
vanishes asO(A«), «→0 while the others behave asO(«). There-
fore, the apparent branch points defined in~21! would move to
infinity in the q-plane. Additional cuts for these branch poin
must be introduced so that the restriction Re(a,b)>0 is still satis-
fied. To this end, we allowd1 , i.e.,b1a, to be continuous acros
these cuts, although (a,b) themselves are multivalued. Thus, th
additional cuts define branches ofd2 , i.e., b-a. A similar situa-
tion arises for wave diffraction by a crack in a transversely i
tropic media~@21#!.

It can be shown that the branch points ofd2 are also roots of
the functions in~15c! and ~17!. In the Appendix,d2 is extracted
as a factor from these functions so that it cancels out in the ra
displayed in~16!. From~A4! and~A5! in the Appendix and use o
~14c!, the result

ũx52AaB
d1

2D

t̃

c44p
2N

q

D

s̃

c44p
, (22a)

ũy52A
d1

2AaD

s̃

c44p
1N

q

D

t̃

c44p
(22b)

for y50 can be obtained, where

D5A1@A21~m21!2q2#B, N5A1~12m!B. (23)

It is noted that, for the restrictions~8!, the coefficients of (s̃,t̃)
exhibit only the branch cuts Im(q)50, uRe(q)u.1 and Im(q)50,
uRe(q)u.1/Ab. In particular,D is analytic in theq-plane cut along
Im(q)50, uRe(q)u.1/Ab and exhibits the nonisolated real roo
q561/cR(0,cR,1). Indeed, settingD50 and rationalization
gives a cubic equation inq2 that is identical in form to that ob-
tained in ~@12#! as Eq.~4.3.22! for the roots of the transversel
isotropic Rayleigh function. That is,cRv r is the Rayleigh wave
speed~@22#! parallel to thex-axis for the class of materials con
sidered here, andD is itself the essential factor of the Rayleig
function. As an alternative to the aforementioned cubic equat
cR can be, by following a general approach~@21,23#!, obtained to
within a simple quadrature as

cR5Aab2~m21!2

~11Aa!Aab
Go (24a)

ln Go5
1

p E
1/Ab

1 dt

t
tan21

A12t2

AaAbt221
@a1~~m21!22ab!t2#

(24b)

where ~8! guarantees that the coefficient ofGo is real-valued.
With ~22! available, the two dynamic indentation problems can
addressed.

Indentation by a Rigid Wedge
Consider the same half-space governed by~7!, ~8!, and~10!. In

this case, however, a rigid wedge of half-angle1
2p2c is pressed

directly into the surfacey50 for s.0, as depicted schematicall
in Fig. 1. The indentation speed is constant, as is the rate at w
the contact zone spreads symmetrically from the wedge ape
view of ~6!, (C,c) are the two speeds, nondimensionalized w
respect tov r . The former dimensionless constant~indentation
speed! is given, while the latter~contact zone expansion rate! is a
priori unknown. A subcritical rate is assumed, however, so t
the restriction

0,c,cR (25)
492 Õ Vol. 68, MAY 2001
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holds in view of~24!. If contact is smooth, no shear stress exi
along y50. Therefore, in light of~9! and Fig. 1, the transform
solution obtained above will also satisfy the indentation probl
upon settingt[0 and finding s such that the contact zon
condition

uy5Cs2cuxu ~ uxu,cs! (26)

is satisfied fory50. Here the usual~@3#! assumption is made tha
the wedge angle is large enough to justify the approximat
tanc'c. In addition to~26!, the choice ofs must satisfy the two
Signorini conditions~@2#! of smooth contact:~I! the contact zone
cannot be in tension anywhere,i.e., s<0, uxu,cs, and~II ! inter-
pretation of the wedge and half-space surfaces should not o
outside (uxu.cs) the contact zone. Moreover, the solution shou
include determination of the zone expansion rate parameterc.

The indentation problem geometry has no characteristic len
and its only nonhomogeneous condition,~26!, prescribes a dis-
placement that is homogeneous of degree 1 in (x,s). The full-field
displacement fory.0 should, therefore, be homogeneous of d
gree 1 in (x,y,s), and the corresponding analysis for the isotrop
half-space~@20#! suggests the trial function

s5
so

p
cosh21

s

cuxu ~ uxu,cs!. (27)

Hereso is an unknown constant that can be shown to be, in fa
the average normal traction over the contact zone. That~27! van-
ishes continuously at the contact zone edgesuxu5cs essentially
guarantees~@20#! that the second Signorini condition will be sa
isfied for ~25!.

Operating on~27! with ~11! gives

s̃5
cso

p2A12q2c2
(28)

Substitution of~28! into ~22b! and settingt̃[0 gives the trans-
form of the normal displacement alongy50. The analyticity of
the result indicates that the entire Im(q)-axis can serve as the
Bromwich contour in the inversion operation~12b!. However,
Cauchy theory can be used to switch the contour onto paths
rounding the branch cuts of (A,B,d1) on the Re(q)-axis. Thus,
the exponential term can be made to be negative and real an
a manner similar to the Cagniard-deHoop procedure~@24#!, the
inversion operation~12a! can be performed by inspection. Settin
Re(q)5t, Im(q)501 then yields the formal integration

uy52
cso

2pc44
Im E

0

s/uxu s2tuxu

A12t2c2

Ad1

D
dt (29)

along the upper side of the Re(q)-axis.
In view of ~14a!, ~20!, and~23!, the integrand of~29! is purely

real for t.1/c, so that whenuxu,cs, 1/c becomes the effective
upper limit of integration and~29! is, appropriately, linear in
(uxu,s). The factors of thes and uxu-terms in the integrand behav

Fig. 1 Schematic of indentation by a rigid wedge
Transactions of the ASME
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as O(t22) and O(t21), respectively, asutu→`. Therefore,
Cauchy theory can be used to transform the integration to
positive Im(q)-axis and a quarter-circle of infinite radius in th
first quadrant of theq-plane. The result is that fory50,
uxu,cs,

uy5
cso

c44
F2sI1

uxu

4cxAa
S 11Ag12Aab

g22Aab
D G (30)

where

x5
ab2~m21!2

Ag224ab2g12ab
S Aab21

Ag22Aab
1

Aab11

Ag12Aab
D
(31a)

I 5
1

p E
0

p/2 VAT12V

V~V1cos2 f!2~m21!2 sin2 f

df

Acos2 f1c2 sin2 f
(31b)

T5~11a!cos2 f1g sin2 f, V5AaAcos2 f1b sin2 f
(31c)

and the integration variable change Im(q)5tanf has been made
for computational efficiency. Substitution of~30! into ~26! gives
the equations

so

c44

5
24xAac

11Ag12Aab

g22Aab

(32a)

cI5
C

4xAac
S 11Ag12Aab

g22Aab
D (32b)

for both the average normal tractionso needed to completely
define the field~26! and the~dimensionless! contact zone expan
sion ratec.

For ~8! the quantities on the right-hand side of~32a,b! are,
respectively, negative and positive. This guarantees in ligh
~27! and Fig. 1 that the first Signorini condition is also satisfied
is noted that the average contact zone stress is independent o
the indentation speed~C! and the rate of contact zone expansi
~c!. This feature arises from the homogeneous nature of the s
tion field, i.e., the problem geometry has no characteristic leng

Indentation by a Rigid Cylinder
Consider the schematic in Fig. 2: A rigid smooth cylinder

radius r is pressed into the half-space at a constant accelera
ao . The contact zone is again assumed to spread symmetri
from the initial contact point~x5y50, s50! with a constant
subcritical speed, wherec is again its value nondimensionalize
with respect tov r , and is restricted by~25!. During the early part
of the process, one can assume thatr @cs, whereupon the contac
zone condition is

uy5
aos2

2v r
2 2

x2

2r
~ uxu,cs!. (33)

As in the wedge study, the solution for this problem can be ba
on the transform solution~13! if a s can be identified that allows
the inverse of~22b! with t[0 to satisfy~33! and the two Signo-
rini conditions, and that allows the expansion rate parameterc to
be determined.

There is again no characteristic length in the problem geome
and corresponding isotropic results~@20#! suggest the trial
function
Journal of Applied Mechanics
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s5
So

pc
Ac2s22x2 ~ uxu,cs!. (34)

Here So is an unknown constant and, as in the wedge case,
form of ~34! essentially guarantees that the second Signorini c
dition, i.e., interpenetration does not occur outside the cont
zone for~25!, is satisfied. Application of~11! to ~34! gives

s̃5
c2So

p3~12q2c2!3/2. (35)

Substitution of~35! into ~22b! with t̃[0 gives a form that is
apparently nonintegrable. However, the use of formal deriva
operations and finite-part integration~@25#! shows that the inverse
of ~22b! exists and is indeed quadratic in (x,s) for uxu,cs. Sub-
stitution into ~33! then yields the equations

rSo

c44
52

1

cIc
, (36a)

I c

I s
5

rao

2bn r
2 (36b)

for both the constantSo needed to completely define~34! and the
~dimensionless! contact zone expansion ratec. In ~36!

~ I c ,I s!5
1

p E
0

p/2 VAT12V

V~V1cos2 f!2~m21!2 sin2 f

3
~cos2 f,sin2 f!df

~cos2 f1c2 sin2 f!3/2 (37)

and, in light of~31b!, it is seen thatI 5I c1c2I s . It is also noted
thatAbv r is the dilatational wave speed parallel to thex-direction.
The quantities (I c ,I s).0 so that, in view of~34! and ~36a!, the
first Signorini condition is also satisfied. In contrast to the wed
case,~36a! shows that the defining constantSo depends on the
indentor shape~r! as well as the contact zone expansion rate~c!.

Solution Aspects
In ~@12#! properties for the materials mentioned earlier as be

typical of the conditions~8!—beryl, cobalt, ice, magnesium
titanium—are listed. For insight into the response of such mat
als to indentation by the wedge, the data gathered in~@12#! is used
in connection with~24! and ~32a! to calculate the dimensionles
Rayleigh speedcR and the average normal contact zone stressso .
The results are presented in Table 1, where it is seen that
Rayleigh wave speed parallel to thex-direction varies little be-
tween materials as a fraction of the corresponding rotational w
speed. The average normal contact zone stress, however, v
widely. As noted earlierc ~radians! should be small, but beryl

Fig. 2 Schematic of indentation by a rigid cylinder
MAY 2001, Vol. 68 Õ 493
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cobalt and titanium—being stiffer in shear (c44)—must, neverthe-
less, withstand much larger average stress values for a g
wedge profile.

Another feature of importance is the wedge speed/contact z
expansion rate relation~32a!. Values of c that satisfy~25! are
plotted versusC in Fig. 3 for beryl. Except for the small differ
ences in the maximum allowable value ofc, cR , seen in Table 1,
this curve would, on the scale chosen, essentially also serve
the other four materials. That is, although~31! and ~32b! suggest
a robust dependence on material constants (a,b,m,g), the varia-
tions of expansion rate with wedge speed as fractions of the r
tional wave speed are essentially the same. Figure 3 does ind
nevertheless, that the rate of increase of zone expansion ra
higher for higher wedge speeds.

For insight into the short-time response of the five materials
indentation by the accelerating cylinder,~36b! is also plotted in
Fig. 3. In this case, the two curves, for beryl and titanium, se
on the scale given, to illustrate the response for the mater
Figure 3 does show, nevertheless, thatc is more sensitive to
changes in the cylinder motion properties (r ,ao) than it is to the
wedge motion properties (c,C).

Comments
This article considered the dynamic indentation of a class

transversely isotropic or orthotropic linearly elastic homogene
half-spaces in plane strain. For illustration, indentation was ei
by a rigid smooth wedge, moving at a constant speed, or a r
smooth cylinder in constant acceleration. The contact zone
assumed to expand symmetrically from the points of initial co
tact at constant subcritical rates.

A transient analysis provided exact transform solutions in te
of a contact zone normal stress distribution. The wedge solu
showed for five specific materials in the class considered that
average normal contact zone stress is largely determined by

Fig. 3 Contact zone expansion rate variation with wedge and
cylinder motion

Table 1 Dimensionless Rayleigh wave speed and average nor-
mal contact zone stress

a b m c44 ~GPa! cR so ~GPa!

Beryl 3.62 4.11 2.01 68.6 0.956 267.6c

Cobalt 4.74 4.07 2.37 75.5 0.962 285.9c

Ice 4.57 4.26 2.64 3.17 0.959 23.47c

Magnesium 3.74 3.61 2.3 16.4 0.943 219.5c

Titanium 3.88 3.47 2.48 46.7 0.936 245.5c
494 Õ Vol. 68, MAY 2001
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material shear modulus, i.e., materials stiffer in shear must w
stand higher average stresses. The relation between wedge
and contact zone expansion rate, as fractions of the rotati
wave speed along the half-space surface, was approximately
same for all the materials considered. The average normal s
in the contact zone was, moreover, independent of the we
speed and zone expansion rate. This lack of sensitivity arose
part, because of the lack of a characteristic length in the prob
geometry.

A study of the cylinder solution for the five materials show
more sensitivity: In particular, the contact zone expansion rate
a fraction of rotational wave speed depended on both motion
rameters~acceleration, radius!. Again, however, the lack of a
characteristic length in problem geometry produced expans
rate/acceleration relations that were somewhat independent o
particular material.

The critical expansion rate was taken as the Rayleigh w
speed~@22#! associated with the half-space surface. A formula
this speed, analytical to within a simple quadrature, was obtain
A similar approach has been used in~@21#!, but here a factoriza-
tion of a function of the Rayleigh type yielded a more compa
result. This factorization process also simplified the forms of
integral transforms of the solution. This was worthwhile becau
the anisotropic materials considered here give rise to additio
branch points in the transform plane that do not occur in
isotropic limit ~@12,21#!. Such factorizations can also be pe
formed in that limit ~see the Appendix! but, because additiona
branch points do not arise, the advantage of the procedure is
relevant.

In summary, the present results are limited by the lack o
characteristic length. Nevertheless, they are exact, and in a so
what simpler form than might be expected for an anisotropic m
terial. They also do allow first-step insight into the response
transversely isotropic or orthotropic materials to rapid~dynamic!
indentation.
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Appendix
ConsiderN2 defined in~17c!. By using~17b! and ~14c!, it can

be written as

N25~B22ab2!~A22aa2!2m2q2aa2. (A1)

Carrying out the multiplication and using~14a,b! and ~20! gives

N252A2B22
S2

2
1

d1
2 d2

2

2
~m2q21B22A2!. (A2)

But ~14a,b! and ~20! also show that

S224A2B25d1
2 d2

2 ,m2q21B25
1

2
~d1

2 1d2
2 !2A2 (A3)

whereupon~A2! can be written as

N25
d1d2

4
@~d12d2!224A2#5d1d2~aa22A2!. (A4)

In a similar fashion,~17b! and ~15c! can be written as

M5
Bd2

Aaa
~A22aa2!N, N5A1~12m!B (A5a)
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R5
Bd2

Aaa
~A22aa2!D, D5A1@A21~m21!2q2#B. (A5b)

These forms exhibit the common factord2(A22aa2).
Similar factorizations of the terms (No ,Ro) in ~19! that arise in

the isotropic limit can also be performed:

No5~bo2ao!S 11m

m
ao1

12m

m
boD (A6a)

Ro5
2

m
~bo2ao!@~11m!ao1~11m24mq2!bo#. (A6b)
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Elastic Multiscale Contact of Rough
Surfaces: Archard’s Model Revisited
and Comparisons With Modern Fractal
Models

M. Ciavarella
CNR-IRIS, str. Crocefisso 2/B, 70125 Bari, Italy
e-mail: M.Ciavarella@area.ba.cnr.it

G. Demelio
Dipartimento di Progettazione e Produzione Industriale
Politecnico di Bari, Viale Japigia 182, 70126 Bari,
Italy
e-mail: Demelio@poliba.it

1 Introduction
Bowden and Tabor~@1# BT, in the following! state that friction

is dictated by ‘‘adhesion~cold weld!’’ and ‘‘ploughing ~inelastic
deformation term!,’’ between asperities. Amonton’s law coul
easily be explained for the ploughing term, as the real area
contact would simply beA5P/H, whereH is the hardness of the
softer of the contacting bodies, andP is the applied load. How-
ever, for the elastic term, which in most cases would be the do
nant one, Hertz’ theory would not predict linearity with load. Du
ing the 1950s, several articles appeared in prestigious jour
~@2–4#! where multiscale models were introduced to explain A
onton’s and several connected well-known laws for friction, we
and electrical/thermal resistance, in terms of elastic deformat
of multiscale, and rigorouslỳ -scale model which we would now
call a fractal ~@4#!, as depicted in Fig. 1—this is not the on
possible choice, as the Archard model only takes into accoun
load redistribution and not of the actual geometry. These mo
found that the relationreal contact area tototal load for an en-
semble of elastic asperities separated enough from each oth
neglect interaction effects, is

An5KnS W

Ẽ D an

(1)
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whereẼ5E/(12n2), andKn is a coefficient which depends o
the number of scales introducedn, and was computed by Archar
for the first few scales only of his model. Archard’s main findin
was thatan tends rapidly to one asn is increased. No particula
attention was, vice versa, paid by Archard to the coefficientKn ,
which will be here recomputed in general and will be specializ
for a fractal geometry.

Independently from these multiscale models, and actually
tending these results, Greenwood and Williamson~@5#, GW
model, in the following! showed that statistical distribution o
heights asperities leads~at least approximately! to linearity be-
tweent and p independently on the exact law relating locallyt
with p, i.e., including any arbitrary local elastoplastic constituti
and frictional laws. Only recent experiments at very small sca
with just one asperity in contact under very carefully controll
conditions are having some success in explaining the intrin
properties of friction~see@6#!. It has been found in particular tha
the friction coefficient is a function of the size of the asperity, a
varies from very high values close to the elastic moduli of t
materials~aroundG/30, in particular, whereG is the shear modu-
lus of the material!, for smallest size to Peierls stress values, co
parable to yield limits at larger sizes. When this knowledge w
be completed, the way towards quantitative predictions of the
tual ‘‘averaged’’ friction coefficient will depend on the actual pr
cise determination of the distribution of contact sizes. This in tu
will need an accurate modelling of real surfaces. As recently p
posed, fractal models seem to have a promising role in conci
describing the apparent self-affinity of roughness, i.e., with f
tures repeating themselves at different scales~@7,8#! but early at-
tempts to use measurements of real surfaces and modellin
contact~@9,10#! were somehow unsatisfactory because they o
considered a geometrical method for computing the contact
from a ‘‘bearing area’’ assumption. Borri-Brunetto et al.@11#,
vice versa, created a finite numerical realization of a surface w
appropriate fractal properties and then used a numerical metho
solve the resulting elastic contact problem at various levels
spatial discretization, suggesting that in the fractal limit the co
tact may consist of an infinite number of infinitesimal conta
areas of total area zero. In other words, the actual contact
appears to be a fractal with dimension below two. This origina
a discussion between the authors during the process of writin
review paper~@12#!, and then to develop a rigorous analysis, sp
cialized to the plane contact for a Weierstrass profile~@13#, CDBJ
model in the following!, demonstrating that extended regions
contact are not possible with this model.

After this effort, we moved back to the original Archard’s wor
and recognized that, although its surface is not a fractal of w
known characteristics, and although the contact mechanics is

ics
er.
01 by ASME Transactions of the ASME
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as rigorous as it can be with the Weierstrass profile, the resu
fractal contact area can be reached very simply by extending
calculations of the original Archard paper~@4#! a little further,
with the appropriate assumptions on the asperities geometry.
results, as shown in the present paper, are surprisingly simila
the Weierstrass profile CDBJ model, in many respects. A disc
sion of possible implications of these findings for friction theor
follows.

2 The Revisited Archard’s Model
Archard’s model is based on the assumption that each asp

at scalen is replaced by many asperities at the higher scale. T
permits an ‘‘uncoupling’’ of scales in the calculations of the r
distribution of the pressure from one scale to the next, sma
one. Therefore, a very simple, analytical recursive argument
be developed. In order to consider ‘‘interaction of scales’’ o
would need to consider the effect of smaller asperities in the
culation of the compliance of the larger ones, as Greenwood
Tripp @14# have done in the context of the statistical models. I
instructive to consider, however, that while the GT model see
to introduce some degree of multiscale features, the decisio
having just two scales is somehow arbitrary, except for the c
where the macroscopic roundness of the sphere is evident. A
the GT model only obtains in most cases a minor modification

Fig. 1 Example of geometry for the Archard model
Journal of Applied Mechanics
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the pressure distribution at the largest scale, due to the small c
pliance effects, but loses the Archard feature of showing the p
sure levels at smaller and smaller scales. It is clear that in p
ciple a numerical model could take into account of all the
effects simultaneously, but it remains a problem to build a mu
scale model from a measured spectrum of the profile.

Turning back to the Archard model, at scale 0 Hertzian re
tions ~@15#, 4.2a! give the contact area as~1! with K0

5p(3R0/4)2/3, a052/3, andR0 being the radius of the sphere
The pressure distribution isp(r )52Ẽ/pRAr 0

22r 2. We now as-
sume that in the areaA0 there is a uniform distribution of asperi
ties having densitym1 ~number of asperities per unit area!. Ex-
tending Archard’s procedure for a contact of always high
number of scales, we obtain the following general expression
the contact area at thenth scale as a function of load:

An5pS 3

4
R0

W

Ẽ D ~121/3n11!

3)
k51

n F 2

3232k mk
1/3n112kS 3

2

Rk

Rk21
D 121/3n112kG . (2)

Notice that forn2.` the dependence on load becomes line
independently on the assumptions on the geometrical quant
mn , Rn . If, on the other hand, the ratiosmk /mk21 andRk /Rk21
are kept constant, we get

An

An21
5

2

3232n ~A0m0!32nS 3

2

Rn

Rn21
A mn

mn21
D 1232n

. (3)

If we now assumefor the spacingln between asperities and fo
the radii Rn a power-law function, i.e.,ln21 /ln5g and
Rn21 /Rn5gD, the density of asperities is obviouslymn51/ln

2,
i.e., mn21 /mn5(ln11 /ln)251/g2. Then, the ratio between con
tact area at subsequent scales is found from~3! to be

An

An21
5

2

3232n S A0

l0
2D 32nS 3

2
g12DD 1232n

. (4)

The limit for n→` is

An

An21
5S 1

g D D21

. (5)

The tendency to power-law~5! indicates that the contact are
tends to a fractal set, whereas the fractal dimension comp
with the box-counting method~see CDBJ! is

dA52

ln
Nn11

Nn

ln
ln11

ln

52

lnS An

An21

mn11

mn
D

ln
1

g

52

lnF S 1

g D D21S 1

g D 22G
ln

1

g

(6)

indicating that thelimiting fractal dimension is

dA532D. (7)

Considering thatD5122 by analogy to the Weierstrass case~see
CDBJ!, the contact area has dimension between 1 and 2, an
gously to what found in CDBJ.
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3 Discussion
The Archard model leads to asymptotic fractal behavior, un

assumptions on radii of curvature for the asperities similar to
Weierstrass CDBJ model, and in contrast with Majumdar a
Bhushan@9,10#, and their ‘‘bearing area’’ geometrical assum
tion, with resulting finite area of contact. Obviously, we don
expect the contact area to be really zero, as real surfaces will
a truncation at one point, with asperities of given minimum si
Even if this was not the case, at a certain scale, deformat
would be so intense that plastic deformation, nonlinearities,
other effects not included in our model would appear. It is cl
that, in the spirit of Archard’s model, if one asperity yields, th
does not affect the load redistribution at the other asperities
equilibrium is already accounted for. Therefore, an idea of
pressure level increase with scale can be found from the t
contact area variation withn, as can be obtained from equation
given above. The resulting trends are very similar to the o
obtained for the CDBJ model. In particular, the fractal dimens
is a constant depending only on geometry and not on load le
but at the first few scale, both higher and lower apparent fra
dimension can occur. Also, as proved with the CDBJ model
sults, although both the contact areas and the distance bet
asperities become smaller, the ratio between the two decrease
that interaction effects become increasingly smaller, and the H
zian approximation becomes valid in any conditions, i.e., even
cases where high loads predict full contact at macroscopic s
~in this case, the present model is poor whereas the CDBJ m
correctly considers the Westergaard solution for predicting c
tact area size!.

4 Conclusions
The most striking conclusion of the calculations is that w

multiscale models the contact area generally~if the radius of as-
perities decreases fast enough! tends to zero, i.e., is a fractal. Th
reason why such an implication had escaped the attention o
searchers for more than 40 years, particularly as the model is q
well known. A possible explanation is that the main issue at t
time was to find the linearity of relation~1!, i.e., that an→1,
whereas the coefficientsKn were never computed for more tha
2–3 scales. The results confirm the conclusion reached num
cally by Borri-Brunetto et al.@11# that the contact area is define
by a fractal set—i.e., that contact is restricted to an infinite se
infinitesimal contact segments in the limitn→`; there are no
contact segments of finite dimension and the total contact
tends regularly to zero. In addition, the deviation from simp
power-law fractal behavior at low wave numbers provides an
planation of their observation that the apparent fractal dimens
is load-dependent. Even at largen, the splitting of segments of the
contact area does not follow a ‘‘simple’’ rule for successi
scales. Therefore, at successive scales, even if yielding is rea
at one location, contact splitting will continue at other locatio
until yielding is reached even there. Therefore, it now becom
clear that the Archard model is in the limit compatible in a sen
to the old Bowden-Tabor simple idea of contact area size given
A5P/H. Therefore, Greenwood-Williamson’s model predic
Amonton’s law from just the effect of randomness of the aspe
height distribution, independently on the constitutive law at m
croscopic scale, Archard’s model explains it as just an effec
load redistribution for a deterministic geometry, and leads in
limit to the other possible explanation~the Bowden-Tabor’s fully
plastic one!, this goes some way in explaining why Amonton
law is so well hidden and intrinsic in the contact of any surfac

However, as Bowden-Tabor’s theories and experiments s
that full yield ~ploughing term of friction! is negligible with re-
spect to ‘‘adhesive’’ elastic term, particularly for hard materia
and repeated sliding~shakedown!, we can infer that the real cas
has a combination of features from all of the above models,
498 Õ Vol. 68, MAY 2001
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that the normal contact problem is largely unsolved. Future p
dictions of global friction coefficient depend crucially on bett
solutions and understanding of this problem.

Acknowledgments
The first author~M.C.! is pleased to acknowledge extensiv

discussions with Prof. J. R. Barber, Dr. J. A. Greenwood and P
K. L. Johnson, and support from CNR for a Short Term fello
ship to travel to Oxford University in July 1999, where this wo
was completed, and for the network COMES~COmputational
MEchanics of Solids! of CNR.

Appendix

Plane and Oversimplified Archard Models. In two dimen-
sion, with the same assumption for the ratiosmk11 /mk and
Rk11 /Rk , we have

An

An21
5S A0

l0
D 1/2n Ap

2221/2n

GS 3

2
2

1

2n11D
GS 22

1

2n11D S 8

p
g12DD 1222n

(8)

which, in the limit for n→` reduces tog12D. Evaluating the
fractal dimension as in the three-dimensional case the limit
fractal dimension is

dA522D. (9)

An oversimplified model of a surface could be imagined
having at scalen a numberg2n of equal asperities of radiusRn not
necessarily equally distributed leads to a fractal dimension

dA5
2

3
~42D ! (10)

which ranges from 4/3 to 2. However, the relation real cont
area versus load is still Hertzian at all scales, which is contrad
ing Amonton’s law.
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Transfer Matrix Method of Wave
Propagation in a Layered
Medium With Multiple Interface
Cracks: Antiplane Case

Y.-S. Wang
Institute of Engineering Mechanics, Northern Jiaotong
University, Beijing 100044, P. R. China
e-mail: yswang@center.njtu.edu.cn

D. Gross
Institute of Mechanics, TU Darmstadt, Hochschulstr. 1,
D-64289 Darmstadt, Germany

The paper develops a universal method for SH-wave propaga
in a multilayered medium with an arbitrary number of interfa
cracks. The method makes use of the transfer matrix and Fou
integral transform techniques to cast the mixed boundary va
problem to a set of Cauchy singular integral equations of the fi
type which can be solved numerically. The paper calculates
dynamic stress intensity factors for some simple but typical
amples. @DOI: 10.1115/1.1360180#

1 Introduction
Wave propagation in a layered medium is of both theoret

and practical importance in such fields as composite mater
geophysics, etc. Since the 1970s, the problems of wave scatt
from an interface crack between two bonded elastic solids h
been widely investigated by many authors, for instance, Loe
and Sih@1,2#, Takai, Shindo, and Atsumi@3# Srivastava, Palaiya
and Karaulia@4#, and Bostro¨m @5# for a mode III Griffith or
penny-shaped interface crack between two half-spaces; Sr
tava, Gupta, and Palaiya@6,7#, and Qu@8,9# for a Mode I or II
interface crack; and Neerhaff@10# Kundu @11#, Li and Tai @12#,
Yang and Bogy@13#, and Gracewski and Bogy@14,15# for a Grif-
fith interface crack of Mode I, II, and III in a layered plate or
layered half-space. However, one may note that only a few pa
have considered multiple interface cracks. The published res
are limited to some simple cases. Kundu@16# first discussed the
interaction between two interface cracks in a layered half-sp
under antiplane transient loading, and then in a three-layered
~@17#!. Zhang@18,19# analyzed the SH-wave propagating throu
a periodic array of interface cracks between two bonded h
spaces. If the medium is composed of multiple layers and, furt
more, if cracks may occur in any interface with an arbitrary nu
ber, the associated wave propagation problems will become m
difficult. Even by using numerical methods such as the finite e
ment method and boundary element method, the problems ca
be solved easily. Here, in the present paper, we develop a un
sal method for wave propagation in a multilayered medium w
multiple cracks distributed in different interfaces. The meth
makes use of the transfer matrix and singular integral equa
techniques. As a preliminary analysis, we treat the SH-wave
tion in this paper. But the method can be extended to the in-p
case in a straightforward manner.

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, Se
15, 1999; final revision, Aug. 10, 2000. Associate Editor: R. C. Benson.
Copyright © 2Journal of Applied Mechanics
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2 Transfer Matrix and Dual Integral Equations
Consider the problem shown in Fig. 1. An elastic material

composed ofN11 layers bonded throughN interfaces. Multiple
Griffith cracks are distributed onm(<N) interfaces. The interface
between ther th and (r 11)th layer is denoted as ther th interface.
We suppose that there aren(p) collinear cracks onr (p)th inter-
face. Take thex-axis along the 1st interface, and denote t
x-coordinates of the tips of crackLpq asapq andbpq ~p51;m,
q51;n(p)! and they-coordinate of ther th interface asy5hr .
This paper will consider the propagation of harmonic SH wav
with frequencyv in such a layered medium. The harmonic ter
e2 ivt will be omitted throughout paper.

We decompose the total displacement and stress wave field$u,
s% as the sum of the fields without cracks$u(0),s (0)% and those
due to the scattering of the cracks$u(s),s (s)%, i.e., $u,s%
5$u(0),s (0)%1$u(s),s (s)%, where$u(0),s (0)% can be obtained by
the classical transfer matrix method or by other methods~cf. @20#!.
The following analysis will be focused on the solution
$u(s),s (s)%. Without confusion, we omit the superscript~s!.

The Helmholtz equation for SH-wave motion in ther th layer is

¹2wr1KTr
2 wr50, r 51;N11 (1)

where wr is the displacement component inz-direction; KTr
5v/CTr with CTr5Am r /r r is the shear wave velocity;m r andr r
are, respectively, the shear modulus and mass density. We de
the displacement discontinuity on thepth interface asDwp which
may be expressed as

¹wp5(
q51

n~p!

Dwpq@H~x2apq!1H~x2bpq!#,

with Dwpq being the unknown tearing displacement of the cra
Lpq ~q51;n(p), p51;m! and H( ) the Heaviside function.
Then the boundary conditions may be written as

tyzr50, y5h0 ,hN11 , r 51,N11 (2)

tyzr2tyzr1150, y5hr , r 51;N (3)

wr2wr 115Dwpd rr ~p! , y5hr , r 51;N (4)

tyzr5tyzr1152tyzr
~0!52tyzr11

~0! , xPLpq , y5hr , r 5r ~p!
(5)

whered rr (p) is Kroneck symbol.
Applying Fourier integral transform to~1! with respect tox, we

obtain its solution in the transformed space, which is written in
matrix form as

$Sr%5@Tr~y!#$Cr%, r 51;N11 (6)

where

$Sr%5$w̄r ,t̄yzr%, $Cr%5$C1r ,C2r%
T, @Tr~y!#5@Tr

0#@Er~y!#,

with

@Tr
0#5F 1 1

2m rb r m rb r
G , @Er~y!#5Fe2br y 0

0 ebr yG
and b r5(s22KTr

2 )1/2 of which the branch should be determine
such that

b r5~s22KTr
2 !1/2, usu>KTr ;b r52 i ~KTr

2 2s2!1/2, usu,KTr .
(7)

The bars appearing in above equations indicate the Fourier
gral transforms,s is the parameter of the integral transforms, a
C1r ,C2r are undetermined functions ofs.

The integral transforms of boundary conditions~2!–~4! can be
written as

$C1%5$B%C21, $CN11%5$X%C1,N11 , (8)
t.
001 by ASME MAY 2001, Vol. 68 Õ 499
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$Sr%2$Sr 11%5$DSr%, y5hr , r 51;N (9)

where

$B%5$e2b1h0,1%T, $X%5$1,e22bN11hN11%T,

$DSr%5$Dw̄pd rr ~p!,0%T, p51;m.

The above equations involve the cases ofh0→2` and/orhN11
→1`. Equation~9! is a recurrence relation. Substituting~6! into
this relation, we can express$Cr% with $DSr (p)% as

$C1%5(
p51

m

@Ēr ~p!#$DSr ~p!%, (10)

$Cr%5(
p51

m

~@ L̄ rr ~p!#1@K̄rr ~p!#H~r 2r ~p!21!!$DSr ~p!%,

r 52;N11 (11)

where

@ L̄ ri #5@W̄r #
21@Ēi #; @K̄ri #52@W̄r #

21@Li #;

@Ēi #5$B%@1,0#@W̄#21@Li #; @Li #5@W̄i #@Ti~hi !#
21;

@W̄#5$B%@1,0#2@W̄N11#$X%@0,1#;

@W̄r #5@W2#¯@Wr #, r .1; @W̄1#5@ I#;

@Wr 11#5@Tr~hr !#
21@Tr 11~hr !#.

Substitution of~10! and ~11! into ~6! yields

$Sr%5(
p51

m

@Mrr ~p!#$DSr ~p!%, r 51;N11 (12)

where we have denoted

@Mrr ~p!#5@T1~y!#@Ēr ~p!#, r 51
(13)

@Mrr ~p!#5@Tr~y!#~@L̄rr ~p!#1@K̄rr ~p!#H~r2r~p!21!!, r.1

which is the transfer matrix of the multiple layered medium w
interface cracks. Write the matrix@Mrr (p)# as

@Mrr ~p!#5F * *

mrr ~p! *
G , (14)

where*s are the other elements of the matrix@Mrr (p)# which are
of no use in the following analysis. Then we have

Fig. 1 A multilayered medium with multiple interface cracks
500 Õ Vol. 68, MAY 2001
th

t̄yzr5(
p51

m

mrr ~p!Dw̄p . (15)

Inserting the inverse Fourier transform of~15! into the boundary
condition ~5!, we obtain

1

2p E
2`

`

(
p51

m

(
q51

n~p!

m̂kpDw̄pqe
2 isxds52tyz

~0!~x,hr ~k!!, (16)

wherem̂kp5mr (k)r (p)uy5hr (k)
, xPLk j , j 51;n(k), k51;m. It is

straightforward that the following relation holds:

1

2p E
2`

`

Dw̄k je
2 isxds50, x¹Lk j . (17)

Equations~16! and~17! are dual integral equations which will b
transformed to a set of Cauchy singular integral equations in
next section.

3 Singular Integral Equations and Numerical Solution
Introduce the dislocation density function of the crackLpq ,

fpq~x!5
]

]x
~Dwpq!, q51;n~p!, p51;m (18)

By considering the differential properties of the Fourier transfor
it is not difficult to obtain

Dw̄pq5 is21E
Lpq

fpq~u!eisudu, (19)

which, when substituted to~16! and ~17!, yields

i

2p E
2`

`

(
p51

m

(
q51

n~p!

s21m̂kpE
Lpq

fpq~u!eis~u2x!duds

52tyz
~0!~x,hr ~k!!, (20)

E
Lk j

fk j~u!du50 (21)

wherexPLk j , j 51;n(k), k51;m.
It is found thats21m̂kp is an antisymmetric function ofs and

has the following asymptotic behavior ass→1`,

s21m̂kp→H 2
m r ~k!m r ~k!11

m r ~k!1m r ~k!11
,gk , k5p

0, kÞp

. (22)

This result can be easily proved~e.g., by using Mathematica, Ver
sion 3.0! for fixed values ofN, m, andp.

Due to~22!, special care must be taken in interchanging the t
integrations in~20!. However, if we consider the following rela
tion

E
2`

`

sgn~s!eis~u2x!ds5
2i

u2x
, (23)

and denote

Pkp~u,x!5
i

2p E
2`

`

@s21m̂kp2gkdkp sgn~s!#eis~u2x!ds

52
1

p E
0

`

@s21m̂kp2gkdkp#sin@s~u2x!#ds, (24)

we can transform~20! into Cauchy singular integral equations:
Transactions of the ASME
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2
gk

p (
q51

n~k! E
Lkq

fkq~u!

u2x
du1(

p51

m

(
q51

n~p! E
Lpq

fpq~u!Pkp~u,x!du

52tyz
~0!~x,hr ~k!!. (25)

Pp(u,x) is a Fredhelm kernel which has no singularity exce
when M̂ p(n) becomes infinite in some cases which we will d
cuss later.

By introducing the substitutions

5
x5ck jj1dk j , u5ckqh1dkq

Fpq~h!5fpq~cpqh1dpq!

Qpq~h,j!52
1

gk
Pkp~cpqh1dpq ,ck jj1dk j!

1
1

p

dkp~12dq j!

ckqh2ck jj1dkq2dk j
,

(26)

with ck j5(bk j2ak j)/2 anddk j5(ak j1bk j)/2, Eq.~25! can be fur-
ther converted to standard Cauchy singular integral equations

1

p E
21

1 Fk j~h!

h2j
dh1(

p51

m

(
q51

n~p! E
21

1

cpqFpq~h!Qpq~h,j!dh

5
1

gk
tyz

~0!~ck jj1dk j ,hr ~k!!. (27)

Meanwhile,~21! becomes

E
21

1

Fk j~h!dh50. (28)

The above equations can be solved numerically by the me
developed by Erdogan and Gupta@21#. Set

Fk j~h!5
Fk j~h!

A12h2
. (29)

Then ~27! and ~28! reduce to

1

M (
s51

M FFk j~hs!

hs2h t
1p(

p51

m

(
q51

n~p!

cpqQpq~hs ,j t!Fpq~hs!G
5

1

gk
tyz

~0!~ck jj t1dk j ,hr ~k!!, (30)

p

M (
s51

M

Fk j~hs!50, (31)

wherehs5cos(p(2s21)/2M ), j t5cos(pt/M), t51;M21; M is
the number of the discrete points ofFk j(h) in ~21,1!; and j 51
;n(k), k51;m.

It is noted that difficulties may arise in evaluation of the sem
infinite integrals~24! because of the possible simple poles of t
integrands along the integral path and located between min(KTr)
and max(KTr). These poles correspond to the general Love-ty
surface waves. One should note that the path of the integra
along the reals-axis is indeed the limit of the path as it approach
the reals-axis from below~@14,15#!. Based on this fact, two dif-
ferent ways have been developed for dealing with these pole
the integrations. Kundu@22# developed a technique of removin
the singularities from the integrands. In result, the original in
grals are divided into two parts—the residues of the integrand
the poles and Cauchy principal integrals. The other technique
forms the contour of integration below the real axis so that
poles occur on the path of integration~cf. @13–15#!. In this brief
note we will employ the second method because it is easy
calculation.
Journal of Applied Mechanics
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4 Examples
The method developed above is quite general and can be

plied to many complicated problems. In this brief note, we on
present numerical results for some simple but typical examp
Our attention is focused on the dynamic stress intensity fac
which are defined as

H Kk j
15 lim

x→bk j
1

@A2~x2bk j!tyz~x,hr ~k!!#

Kk j
25 lim

x→ak j
2

@A2~ak j2x!tyz~x,hr ~k!!#
. (32)

The numerical results may be obtained by the following form
~cf. @23#!:

Kk j
652gkAck jFk j~61!. (33)

Example 1 Two Bonded Half-Spaces. In order to verify
the validity and accuracy of our solution, we calculate the si
plest case—an interface crack of length 2c lies between two dis-
similar half-spaces and compare our results to those of Loeber
Sih @1#. The material constants are taken asm1 /m252 and
r1 /r251. A harmonic SH-wave of the general form

w~ i !5A0eiK T1~x sin u01y cosu0!2 ivt, (34)

strikes the interface normally (u050 deg) from medium 1~see
the sketch in Fig. 2!. A0 and u0 are the amplitude and inciden
angle, respectively. In computation we chooseM530 in Eq.~30!.
The variation of the dynamic stress intensity factor with norm
ized frequencyKT1c is shown in Fig. 2, where the dynamic stre
intensity factor is normalized byt̄0Ac with t̄0 being the shearing
stress along the interface without the crack. The results of Loe
and Sih@1# are also plotted in Fig. 2. Good agreement betwe
our results and theirs is observed.

Next we consider a more complex example—three cracks w
the same length 2c and the same distance 2d between cracks lie
on the interface~see the sketch in Fig. 3!. The ratio ofc andd is
set to 1:1.25. The results are shown in Fig. 3, where the dyna
stress intensity factors are normalized byt0Ac with t0
5m1A0KT1 . Resonance is observed at the lower frequencies,
the resonance peaks for the inner crack tips~tips 1 and 2! are more
pronounced than that for the outer ones~tips 3!. The later oscil-
lates more pronouncedly at the higher frequencies. In this exam
we also takeM530. In order to check the convergence of th
solution we calculate the dynamic stress intensity factor atKT1c
51 for the crack tip 1 by choosing different values ofM and list
the results in Table 1~see the first line for the present example!. It
is shown thatM530 can give good accuracy.

Fig. 2 Dynamic stress intensity factor for one interface crack
in a system of two bonded half-spaces
MAY 2001, Vol. 68 Õ 501
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Example 2 A Layered Half-Space. Again consider the
above example, but the upper half-space is of finite thicknesh
~see the sketch in Fig. 4!. Figure 4 illustrates the normalized dy
namic stress intensity factorsK III /t0Ac versus the normalized fre
quencyKT1c for h/c51. The effects of the free surface can b
observed in the figure. As the frequency increases from zero
dynamic stress intensity factors also increase from zero and r
resonant peak values at rather low frequencies. Contrary to
ample I, the outer crack tips involve more pronounced peak
the present case. It is worthy of note that a zero value of
dynamic stress intensity factors appears at a higher freque
(kT1c'2.24). All these features may be explained by the refl
tion of waves between the free surface and the interface.

Example 3 Two Half-Spaces Bonded Through a Layer
Consider two half-spaces bonded through an interlayer of th
nessh ~see the sketch in Fig. 5!. There are two cracks lying on

Fig. 3 Dynamic stress intensity factor for three interface
cracks in a system of two bonded half-spaces

Fig. 4 Dynamic stress intensity factor for three interface
cracks in a system of a layered half-space

Table 1 Normalized dynamic stress intensity factors,
K III Õt0Ac , at K T1cÄ1 for crack tips 1 in the three examples by
choosing different values of M

M520 M530 M540 M560

Example 1 0.804341 0.804396 0.804422 0.80444
Example 2 0.684742 0.684793 0.684805 0.68482
Example 3 0.910096 0.910223 0.910245 0.91026
502 Õ Vol. 68, MAY 2001
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each interface. The crack size and distribution are the sam
those in Example 1. The material constants are taken
m1 :m2 :m352:1:2 andr15r25r3 ; andh:c is set to 1 : 1. The
incident SH-wave with the form~34! propagates normally (u0
50 deg) to the interlayer in material 1. The normalized dynam
stress intensity factorsK III /t0Ac for the four cracks are plotted
versusKT1c in Fig. 5. As the frequency increases the dynam
stress intensity factors first decrease and then increase to
values. Generally the cracks on the lower interface have hig
dynamic stress intensity factors than those on the upper interfa

In the last two examples, we takeM530 as in the first ex-
ample. The convergence is shown in Table 1.

Finally we mention that the method developed in this brief n
is universal and can be used to solve many complex proble
However, we only give some simple examples. A lot of top
based on this piece of work are left for further investigation. T
in-plane case that is more complicated will be explored in sub
quent works.
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A higher order displacement based formulation has been de
oped to investigate wave propagation in fiber-reinforced polym
composite laminated (FRPCL) plates. The formulation has b
applied, as an illustration, to a plate made up of transvers
isotropic laminae with the axes of symmetry lying in the plane
the lamina. Results for the plane as well as the antiplane str
cases are shown to be in excellent agreement with the exact
tions for isotropic and transversely isotropic single layered plat
Also, numerical results have been obtained for crossply (0 deg
deg/0 deg/90 deg) laminated composite plates, which agree
well with the previously published numerical results. The form
lation can be employed to expeditiously investigate the disper
characteristics of waves propagating in a plate with an arbitra
number of anisotropic laminae.@DOI: 10.1115/1.1352062#
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Introduction
Wave propagation through laminated composite plates has b

investigated extensively in the past by many researchers. A
exact solutions have been reported on wave propagation thro
isotropic plates~e.g.,@1,2#!. Datta et al.@3# investigated harmonic
wave propagation through a laminated infinite medium in wh
each lamina was divided into sublayers and the displacement
tribution through the thickness of each layer was approximated
cubic polynomial interpolation functions. The displacements a
tractions at the interfaces of the adjoining sublayers were con
ered as generalized co-ordinates. Liu et al.@4# presented a numeri
cal method for investigating wave propagation in anisotro
laminated plates. The displacement field in each sublayer o
lamina was approximated by a linear expansion in thickness
rection and by a series in the width direction. Lih and Mal@5#
developed a multiple transform technique coupled with a num
cal evaluation scheme to analyze a composite laminate subje
to dynamic loads.

A simple approach with lesser complexities in formulation h
been followed in the present work to solve the problem of wa
propagation in laminated composite plates. A higher order cu
variation of displacement function is assumed through the th
ness of each lamina in the laminate whereas displacement in
gitudinal direction has been modeled exactly by an exponen
function. Variational principle has been applied to each layer a
the stiffness and mass matrices have been assembled by em
ing continuity of displacements and rotations at interfaces, t
making the formulationC1 continuum. Although variation of dis-
placement field has also been modeled using cubic polynomia
methods discussed above, the present method works with sim
displacement based formulation with displacements and rotat
as degrees-of-freedom instead of tractions and still produ
equally accurate results. An isotropic plate has been analyzed
the results compared with the analytical results to prove the a
racy and validity of the numerical technique developed. Sub
quently, a crossply laminated plate has been analyzed and
results discussed.

Formulation
A higher order displacement based formulation has been

sented to analyze wave propagation through composite lamin
plate. Displacement field is defined by

H u
wJ 5@X#$q% (1)

where

@X#5FX1 X2 X3 X4 0 0 0 0

0 0 0 0 X1 X2 X3 X4
G (2)

and

$q% t5@u1 u2 ux1 ux2 w1 w2 uz1 uz2#. (3)

Here,ui andwi , i 51,2 are the generalized displacements alo
thex andz-directions, anduxi, uzi, i 51,2, are rotation and trans
verse strain, respectively, atz5(21)ih. Moreover, Xi , i
51, . . . 4 areexpressed as cubic polynomials.

The dispersion equation for wave propagation in a lamina
unit width can be written as

@K#2v2@M #50 (4)

where

@K#5@K11#1 il~@K12#2@K12#
t!1l2@K22#. (5)

Here

@Kab#5E
2h

h

~@Ba# t@C#@Bb# !dz, a,b51,2c.
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504 Õ Vo
Fig. 1 „a… Comparison of results obtained by the present method with the analytical results presented by
Mindlin †1‡ „b… Results obtained by present method for crossply composite laminated plate of „0 deg Õ90
deg Õ0 deg Õ90 deg … lay-up
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@M #5E
2h

h

~@X# tr@X# !dz.

Further,@Ba#, a51,2 are strain displacement relationship mat
ces and@C# is the constitutive matrix.

The general solution$q%5$q0%e
ilx sin(vt) has been employed

to arrive at the dispersion Eq.~4!. Here, $qo% is the amplitude
vector, v is circular frequency, andl5zp/H, where z is the
wave number andH is the total thickness of the laminated plat

Equation~4! can be solved as an eigenvalue problem and
quenciesv can be obtained for given value ofl.

Numerical Investigation
A general-purpose program has been developed on the bas

theoretical formulation discussed above, for determining nat
frequencies of vibration of a composite laminate subjected t
time-harmonic wave. The program has been developed to
with both real and imaginary wave numbers. The numeri
method proposed has been validated by comparing results
tained with the analytical results presented by Mindlin@1# for an
isotropic plate having properties as presented below:

thickness of plate: 25.4 mm, mass density: 2.76
3104 kg/m3

C11595.590 GPa,C13542.950 GPa,C33595.590 GPa,
C55526.320 GPa

The plate has been divided into 25 sublayers. The results h
been presented graphically in Fig. 1~a! where the solid lines rep
resent analytical results, whereas solid circles represent the re
obtained by using the present formulation.

A crossply laminated plate of~0 deg/90 deg/0 deg/90 deg!
lay-up and material properties as presented below has been s
wherein each lamina of the laminate was divided into 20 sub
l. 68, MAY 2001
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ers. The results obtained have been presented graphically in
1~b!. Only frequencies for real wave numbers have been prese
for brevity.

Thickness of each lamina: 6.35 mm, mass density: 1.0 kg3

For 0 deg lamina,C115146.83 GPa,C1354.08 GPa,C33
515.99 GPa,C5555.86 GPa

For 90 deg lamina,C11515.99 GPa,C1354.08 GPa,C33
5146.83 GPa,C5555.86 GPa

In Fig. 1~a,b! the natural frequencies of vibration and the wa
number have been normalized to facilitate comparative study.
rametersV andz have been defined as

V5v
H

p
AS r

C55
D 0o and z5

lH

p
.

Here,r is the mass density,C55 is the in-plane shear modulus o
elasticity of 0 deg lamina, andH is the total thickness of the plate
An excellent agreement of the results with the analytical res
for isotropic plate shown in Fig. 1~a! demonstrates the accuracy o
the proposed method. The dispersion curves shown in Fig.~b!
for crossply plate differ considerably from those shown in F
1~a! for isotropic plate. The cutoff frequencies are lowered
comparison with isotropic plate and in general the dispers
curves follow an asymptotic path. A thorough modal analysis
necessary for interpretation of these dispersion curves. S
analysis is not performed here for brevity, however.

Conclusions
A higher order displacement based formulation has been

sented to analyze dispersion characteristics of guided waves
laminated composite plate of infinite dimensions. The interla
continuity of displacements and rotations has been imposed w
assembling the stiffness and mass matrices of each layer,
making the formulationC1 continuous. The results for the isotro
pic plate have been shown to be in close agreement with
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analytical results. The proposed method has been demonstrat
be very simple and straightforward without any loss of accur
in comparison with the available numerical methods. The res
obtained for a crossply laminated composite plate have show
considerable difference in comparison with the dispersion cur
obtained for isotropic plate.
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1 Introduction
Radial thickness profiles of industrial circular saws often co

prise a series of two or three uniform thickness annuli. Bird~@1#!
claims that such thickness profiles increase the critical speed
saw, which increases the operational speed range of the saw
helps maintain cutting straightness. The purpose of this brief n
is to compute the optimal saw radial thickness profile for a fix
width cut and compare that profile to those currently in use.

Thickness variations of circular saws are bounded from ab
by the thickness of the carbide tips brazed to the saw teeth.
thickness greater than the carbide tip thickness will rub agains
wood during cutting, which will produce high cutting torques a
burn and ruin the cut surface. Thickness variations are boun
from below by some minimum thickness capable of withstand
the in-plane stresses in the saw produced from cutting forces
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rotation. Consequently, the numerical optimization routine ne
only consider thickness variations between these two bou
These bounds differentiate this optimization problem from tho
that have been previously studied. For example, Olhoff@2# and
Thambiratnam and Thevendran@3# maximized the fundamenta
vibration frequency of a variable thickness, stationary, circu
disk subject to a constraint on the disk volume. Optimal thickn
profiles for minimum stress difference~@4#! and kinetic energy
storage~@5#! have also been computed.

In this investigation, the optimal thickness profile for maximi
ing critical speed consists of two annuli, the inner one with thic
ness equal to the upper bound, the outer one with thickness e
to the stress-induced lower bound. The percentage increas
critical speed is a function of clamping ratio and the lower bou
and is greater than ten percent in some cases. However, while
radial profiles currently in use by industry are qualitatively simi
to the optimal profile, the industrial profile examined here actua
decreases the critical speed of the saw. This disparity suggests
critical speed may not be the critical design parameter for ev
ating circular saw performance.

2 Modeling and Optimization Procedure
Modeling the saw as a Kirchhoff plate with in plane stress

the dimensionless critical speedVcr of an axisymmetric, centrally
clamped, rotating circular saw is the lowest eigenvalueV of the
eigenvalue problem derived by rendering the functionalR@w# sta-
tionary ~@6#!

R@w#5
1

2E V2h~s rw,r
21suw,u

2/r 22w,u
2!1h3$~¹2w!2

22~12n!@w,rr ~w,r /r 1w,uu /r 2!2~~w,u /r !,r !
2#%dA

(1)

wheredA5rdrdu is the planar, unclamped area of the disk e
tending overk<r<1 and 0<u<2p, w(r ,u) is the transverse
deflection of the disk,h(r ) is the disk thickness,s r andsu are the
radial and hoop stresses for unit rotation speed,n is Poisson’s
ratio, ¹2 is the Laplacian operator, and a comma indicates par
differentiation.

r.

Table 1 Summary of optimal thickness profile designs and their
properties
001 by ASME MAY 2001, Vol. 68 Õ 505
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Table 2 Comparison of uniform thickness, optimal profile, and existing profile designs
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The axisymmetric stressess r and su are determined prior to
solving ~1! by computing the in-plane radial displacementu(r )
that renders the functionalS@u# stationary~@7#!

S@u#5E 1

2
h@12~u,r

21u2/r 2!124nu,ru/r #2rudA. (2)

The stress are then

s r512u,r112nu/r su512nu,r112u/r . (3)

While explicit equations and boundary conditions foru andw
can be derived by setting the variation ofS andR equal to zero,
the fact thath(r ) is not uniform makes these calculations labo
ous. A more convenient solution approach is to renderS and R
stationary using the finite element method. With this approa
only the essential boundary conditions need be explicitly impos

u~k!5w~k!5w,r~k!50. (4)

The three natural boundary conditions—vanishings r , moment,
and shear atr 51—are satisfied as part of the finite element s
lution process. We use the three-node element described by C
and Ren@8# with quadratic trial function foru and quintic trial
functions for w and up to 21 elements betweenk<r<1. This
number of elements gives results that are within 0.1 percen
those with twice as many elements.

In rendering~1! dimensionless, we takenh(k)51. We further
bound the thickness variations by

hmin<h<1 (5)

wherehmin is a fixed constant. The optimization was perform
using Powell’s method which varied the nodal value ofh(r ) in
order to maximizeVcr .

Fig. 1 Scale drawings of the radial profiles of the saw designs
shown in Table 2. „a… Uniform thickness; „b… optimal profile; „c…
existing profile. Cross-hatched area represents rigid clamping.
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3 Results and Comparison to Existing Designs
Under all conditions tested, the optimum profile for maximizin

critical speed consists of two, uniform thickness annuli:

h~r !5H 1, k<r<r opt

hmin , r opt,r<1
(6)

Table 1 gives a summary of specificr opt andVcr as functions ofk
andhmin . In general, for a givenk, ashmin increases,r opt moves
radially outward until the limiting conditionhmin5ropt51 of a
uniform thickness disk is reached. Table 1 also reports the
centage increase inVcr over the uniform thickness,h51 case.
These increases can be substantial for small values ofhmin . Fur-
ther details concerning the optimal profile can be found in~@9#!.

Table 2 compares the critical speed of three different saw
signs with k50.625: a uniform thickness saw withh51; the
optimal design forhmin50.702; and an actual industrial desig
described by Bird@1# for which hmin50.702. Figure 1 gives scale
drawings of these three radial profiles. While the optimal des
predicted here raisesVcr slightly ~0.73 percent!, the industrial
design profile actually decreasesVcr by over 13 percent. IfVcr
were the principal design parameter for this particular indust
saw, the stepped saw profile would be significantly worse than
uniform thickness profile. Since this does not seem to be the c
in practice, it suggests thatVcr is not the principal design param
eter for this saw. Nevertheless, in the cases whereVcr is the
principal design parameter, the optimal profiles described here
be used to improve rotating disk design.

4 Discussion
The optimal thickness profiles found here are in some resp

counterintuitive. If one uses the analogy of an I-beam or a hon
comb panel, one might guess that removing mass from the m
plane of the disk might improve its critical speed, which in fact
does~@10#!.

Accordingly, one might expect that removing mass from t
exterior surfaces of the disk would lower critical speed. This r
soning, however, is incorrect, as the results reported here indic
For rotating disks, removal of mass from either the midplane
the exterior surfaces can raise critical speed, provided, of cou
that the removal is performed at the correct radial locations. F
thermore, the mass removal should not be gradual or even
tinuous, as is found in several related optimization proble
~@11,12#!.

From the perspective of the saw designer, the most impor
insight to be gained from this investigation is the fact that t
uniform thickness profile is not optimal with regard to critic
speed. In hindsight, this result is straightforward and, as one
viewer felt, perhaps even obvious. Historically, however, step
circular saws did not become common in the industry until
1980s, long after resources required to analyze and design
saws became readily available. If, in fact, this results were ob
ous, there would not have been such a delay between the ana
capabilities of the engineers and the industry practice.
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