Journal of
Applied Mechanics

Published Bimonthly by The American Society of Mechanical Engineers
VOLUME 68 « NUMBER 3 « MAY 2001

TECHNICAL PAPERS

369 On the Behavior of Folded Tape-Springs
K. A. Seffen

376 On Saint-Venant's Problem for an Inhomogeneous, Anisotropic
Cylinder—Part I: Methodology for Saint-Venant Solutions
S. B. Dong, J. B. Kosmatka, and H. C. Lin

382 On Saint-Venant’s Problem for an Inhomogeneous, Anisotropic
Cylinder—Part II: Cross-Sectional Properties
J. B. Kosmatka, H. C. Lin, and S. B. Dong

392 On Saint-Venant's Problem for an Inhomogeneous, Anisotropic
Cylinder—Part Ill: End Effects
H. C. Lin, S. B. Dong, and J. B. Kosmatka

399 Buckling of Free Infinite Strips Under Residual Stresses and Global
Tension

F. G. Rammerstorfer, F. D. Fischer, and N. Friedl

405 Stress Concentration Reduction at a Reinforced Hole Loaded by a
Bonded Circular Inclusion
K. T. Chau and X. X. Wei

412 On Bridgeman'’s Stress Solution for a Tensile Neck Applied to
Axisymmetrical Blunt Notched Tension Bars
A. Valiente

420 Cavitation and Mushrooming in Attack of Thick Targets by Deforming
Rods

M. Lee

425 Hysteretic Behavior of a Bar Under Repeated Axial Loading: An Extended
History
N. Yoshida and T. Nonaka

432 Contact Stresses in Multilayered Strands Under Tension and Torsion
K. Kumar and J. Botsis

441 Elastic Fields in a Polyhedral Inclusion With Uniform Eigenstrains and
Related Problems
H. Nozaki and M. Taya

453 Lyapunov Exponents and Moment Lyapunov Exponents of a
Two-Dimensional Near-Nilpotent System
W.-C. Xie

462 Explicit Equations of Motion for Mechanical Systems With Nonideal
Constraints

F. E. Udwadia and R. E. Kalaba

468 Stroh Finite Element for Two-Dimensional Linear Anisotropic Elastic
Solids
Chyanbin Hwu, J. Y. Wu, C. W. Fan, and M. C. Hsieh

476 Scattering of a Rayleigh Wave by an Elastic Wedge Whose Angle is
Greater Than 180 Degrees
A. K. Gautesen

480 Boundary Element Formulation for Thermal Stresses During Pulsed Laser
Heating
P. H. Tehrani, L. G. Hector, Jr., R. B. Hetnarski, and M. R. Eslami

(Contents continued on inside back cover )

This journal is printed on acid-free paper, which exceeds the ANSI Z39.48-
1992 specification for permanence of paper and library materials. @™
@ 85% recycied content, including 10% post-consumer fibers.




(Contents continued )

Journal of Applied Mechanics Volume 68, Number 3 MAY 2001
490 Rapid Indentation of Transversely Isotropic or Orthotropic Half-Spaces
L. M. Brock, H. G. Georgiadis, and M. T. Hanson
BRIEF NOTES
496 Elastic Multiscale Contact of Rough Surfaces: Archard’s Model Revisited and Comparisons With Modern Fractal

499

503

505

Models
M. Ciavarella and G. Demelio

Transfer Matrix Method of Wave Propagation in a Layered Medium With Multiple Interface Cracks: Antiplane
Case
Y.-S. Wang and D. Gross

Wave Propagation in Laminated Composite Plates Using Higher Order Theory
M. R. Chitnis, Y. M. Desai, and T. Kant

Thickness Profiles for Rotating Circular Disks That Maximize Critical Speed
G. M. Warner and A. A. Renshaw

ANNOUNCEMENTS AND SPECIAL NOTES

508
509
510
511

Information for Authors

Preparing and Submitting a Manuscript for Journal Production and Publication
Preparation of Graphics for ASME Journal Production and Publication

New Reference Format



On the Behavior of Folded
kA seen | TAPE-SPrings

Department of Mechanical Engineering,
University of Manchester Institute

of Science and Technology,

Sackville Street,

Manchester M60 1QD, UK

e-mail: keith.seffen@umist.ac.uk

Tape-springs are thin-walled beams with a curved cross section that can be elastically
deformed to yield a flexible region of high curvature known as a fold. This feature is
exploited in the folding and self-deployment of a number of recently proposed deployable
structures. This study characterizes the quasi-static response of a folded tape-spring
under a prescribed rotation and separation between its support points. It is shown that the
corresponding end loads and fold shape are accurately predicted by a variational tech-
nique, and are confirmed by a finite element analysis. This information may then be used
in further design of tape-spring hinge systen{®0I: 10.1115/1.1365153

1 Introduction and Background plane of symmetry are to be considered; the effect of lateral loads

This study deals with a specialized structural form of the ei§ not pursued. Thus, the aim of this paper is to formulate compact
ervday car i.nter's tape knO\E)vn as a “tape-sprina.” A tape-s ri\fnodels of behavior, which may be used in subsequent design for
eryday carp pe Know pe-spring. PE-SPMNG5\ved tape-spring structures, and the layout is as follows.

is a thin-walled, open cylindrical structure with a natural trans-

dinal plane to yield a well-defined elastic creasdaid. In order  finjte element analysis provides more accurate insight, and sim-
to properly characterize such behavior, moment-rotation relati lifying assumptions on the behavior are stated. An expression for
ships for symmetric bending are usually performed and are highie" radius of curvature of fold in a tape-spring under end forces
nonlinear and direction dependefit]). For example, if the direc- 44 eng couples is derived by a variational method in Section 4.
tion of bending is in thepposite sens® the original transverse The performance is then compared to simulations from finite ele-
curvature, the spring exhibits a snap-through buckling to suddenyent analysis in Section 5. The study concludes in Section 6.
form a fold. Duringequal-senséending—in the same direction
as the transverse curvature—formation of a fold is more gradual. £q|d Behavior
In both cases, the fold is connected on either side to relatively o o
undeformed straight parts and resembles a continuous hinge. /"€ geometry of an undeformed tape-spring is shown in Fig.
When released, a folded tape-spring quickly returns to tH4?)- The transverse radius of curvatureRisthe overall length is
straight configuration. This ability to self-actuate and the simplid> @nd the cross section has uniform thicknésand subtends
ity of form are exploited in the folding and self-deployment ofnNd/€a _ .
several structures recently proposed for spacecraft applications%Jnder Increasing equalland opposite end couples,. anarrow re-
see Sefferf2] for an extensive review. Two examples are a rigi¢!on Of the tape deforms into a fold connected on either side by
panel connected at its base to a spacecraft through rows of sh a?s'itr']ogiorpll(ogg r?%'gr}gfmsétrgghtrgig:;aigifafgm Stghtigabtg_
parallel tape-spring§3,4]) and a membrane antenna with radially-®"Y N ™19- tems wit i pro wabili 5([8])9 dis dis-
mounted tape-springs that are either discretely folded or wrappté%lv'or in systems withpropagating instabilitie and Is dis

cussed at length by Seffg¢@] with reference to tape-springs.
around a central huld5-7]). At the end of deployment, the tape- . Rt .
springs “lock” into tﬁeir u];deformed shape ?o i)rlnpart some ;Ptiff- Upon formation, the fold has a constant longitudinal radius of

ness to the foldable structure curvature,R*, and zero transverse curvature irrespective of the
In dynamic laboratory tests, a folded tape-spring structure rigla.tlvg m}atllo?,%l bet\évefln tI;e ends. A ntugtiﬁragf'approx:?ate,

restrained by a minimum of forces and simple release mechanis §|_||n3|g ul's lf[ ies[ g ]t) alve sug:ge_s el i ;S equalto .
ensure that the deployment is free from interference of the holdi owever, extensive Tinite element simuations 1or a range o
e-spring geometrig$2]) have shown that there is a marginal

- . 1
parts. In practice, extra loads may be applied to the struttere .
fore deployment, as given by the large inertia forces during Iaunﬁ;\fference between these values and is assumed to be the case

or by over-constraining the packaged state. If measures are %e'rgofgntgﬁés :Sspl;?nxggiflzécg fr?éd I?niglle (;fn’?gl]lblrc‘;ﬂr::eitgcti?fal
taken to prevent transmission of these loads through the ta Y Teg gligibly 9

firvature Fig. (b)

spring ends to the more flexible fold regions, the application may ’ AT . "

prematurely unfold or some tape-springs may become damagedn-ghﬁlgq?:gsvé?sfncgng'tﬂfé %ﬂ;’r‘i‘tgfsf Sgp?ct)eg_’("i‘s_ll/;)
It would be difficult to ascertain the degree of distortion of gaciseq

damage without doing a detailed study of the overall structure; ar 1R for opposite-sense bending and td/R for equal-sense
g€ joing a det. y . ; %@nding. Following Calladingl2], multiplying the flexural rigid-
appropriate starting point is to consider a single tape-spri

Moreover, the post-buckled response under symmetric end gstlior)r,1al1<tle+o?<t'th:rl)der?cilir:hemtg?r?:l\étefl\e/l3 r(;:zr;]gﬂ%iﬂﬁxl?ﬁes
couples is well understoo€1,2,7). Therefore, it is natural to Id as 9 ' ’ yp
extend study to a folded tape-spring also subject to end forces. tPo

further simplify matters, only deformations within the longitudinal M=DRa[ k| + vk], (1a)
Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF =M*=DRa i _,_K (lb)
MECHANICAL ENGINEERS for publication in the ASME QURNAL OF APPLIED R* "R/’

MECHANICS. Manuscript received by the ASME Applied Mechanics Division, Oct.
18, 2000; final revision, Dec. 6, 2000. Associate Editor: R. C. Benson. DiscussionghereD = Et3/12(17 vz), E is Young’s modulus and is Pois-
the paper should be addressed to the Editor, Professor Lewis T. Wheeler, Departrg%'h:s ratio. Note that Eq.(th) is independent of the arc-length of

of Mechanical Engineering, University of Houston, Houston, TX 77204-4792, al L.
will be accepted until four months after final publication of the paper itself in th old, R@. Thus, asf is increased or decreased under end couples

ASME JOURNAL OF APPLIED MECHANICS. C=M*, Fig. 1(b), the fold grows or shrinks in arc-length. More
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t carried in equilibrium. For an initially symmetric layout, the end
forces are therefore co-linear, as shown in Figp) 2In this case,
the end couples are not necessarily equalto nor is P small.
This may not be entirely obvious, but is easily demonstrated again
with a bent length of carpenter’s tape. If the distance between the
tape-spring ends is decreased by application of inwardly pointing
forces, the relative rotation between the ends also increases if the
end couple is held amM*. However, if the end couple in the
direction of rotation is reduced, so does the rotation. In either
case, the bending moment at the fold center is greater Mvan
leading to an increased apex curvature abo®R 1Conversely, if
0 is fixed and the end forces repel one another, i.e., point away
from each other, the midpoint bending moment is a minimum and
may be less thaM*, causing the fold curvature to decrease.
Fig. 1 Tape spring definitions:  (a) undeformed geometry; (b) Under large forces, the fold can cleave apart into two separate
deformation with a single fold under end-wise couples C. The  folds, which then freely run along the tape in opposite directions
SeCtiOIj view is end-on and the direction of bending is in the to either end, and can be readlly demonstrated.
opposite sense to the transverse curvature. In a folded tape-spring application, end loads that compress the
folds in tapes may give rise to large changes of curvature and,
possibly, plastic deformation; if the ends are being pulled apart, a
fold may separate, thereby upsetting the packaged configuration.
Therefore, it is imperative to quantify such behavior, in order to
ensure safe stowage of the application during transportation as
well as preservation of the proper shape required for accurate
P deployment. However, the problem is uniquely complicated by
¢ \)_ the interdependency of the large displacement deformation and
(b) the stress-resultants at any section within the tape-spring, and
needs to be included in any analytical procedure. Previous studies
on tape-springs referenced to thus far point to the success of finite
element analyses in reproducing experimental behavior and is the
route chosen here to provide, first, more detailed insight into the

Fig. 2 Performance of fold under end loads: (a) end force ap-

plied to built-in tape-spring and the fold freely moves; (b) sym- f . - L bt .
metric end loading and a folded tape-spring and the fold does end-loaded behavior. This will permit simplifying assumptions to
not move be made for a subsequent theoretical study.

generally, the position of the fold along the tape ahdre not 3 Finite Element Analysis
uniquely determined, provideflis not so small that the tape snaps The commercially available software package ABAQUS3])
back to the straight configuration. is used to model the tape-spring as a mesh of S4R5 shell elements.
A relatively simple experiment that illustrates this indetermiEach element is quadrilateral with four corner nodes, has five
nacy has one end of a folded tape-spring clamped and a Prcelegrees-of-freedom, and the displacement field within the element
applied parallel to the other end, see Figa)2 When 6 is held is bi-linear. Due to symmetry, only half the mesh in the transverse
fixed, the fold is observed to move towards the base as the tpection needs to be modeled. Typically, the total number of
translates under virtually zero force. Near to the support, the rigddements is 240, with 48 along the length of the tape, and the
base shape interacts with and arrests the motion of the fold. Ssbaight mesh is shown in Fig.(8. In addition, two reference
sequently, points within the fold are constrained to unnaturallyodes are defined at the centroid of cross section at each end and
deform with highest curvature on the base side, Riglno longer are connected to nodes in the same end of tape-spring by means of
small. rigid, massless bars. The corresponding force and kinematic quan-
A detailed study and confirmation of the above behavior ities at the reference nodes define the overall equilibrium re-
provided in Seffen and Pellegrifd]. Importantly, if like loads sponse of the tape-spring. The material properties are linearly
persist at tape-spring ends in a more complex tape-spring stretastic and a small-strain, large-displacement behavior is assumed.
ture, then it cannot be guaranteed that the packaged state remairihe tape-spring is deformed in two stages. First, a fold is
intact. formed under equal and opposite end couples. One of the refer-
When the fold is not near to a support, only loads that attemghce nodes is fixed in position, but is permitted rotation about the
to induce symmetric deformation about the fold midpoint may baxis of bending while the other node is free to translate and to

Fig. 3 Finite element model and deformation response: (a) original mesh and initial bending to form an opposite-sense fold; (b)
tape-spring before and after compression by end forces with fixed end rotation
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Table 1 Geometry and material properties of tape-spring, and fold radius is everywhere constant undéi but the change in
initially folded geometry curvature increases towards the midpoint during compression.
This also confirms that, except for small changes in the ploy re-

[Rmm] [er] [mtm] [xll_?a] [G%d [f’] [rﬁ:n] [rgdj gions, the parts on either side of the fold have negligible curva-
ture.
20.3 094 0.16 8 630 03 236 = It is possible to report in detail on many other aspects of defor-

mation but, for the sake of brevity, the assumptions they lead to
are now summarized. Presuming to characterize behavior under
fixed 6 due to, firstM* and to, second? andC when s varied,
rotate. To capture the nonlinear snap-through phase, the solutiban: the fold undergoes additional bending, symmetric about its
procedure empowers an arc-length method to extract the equilibidpoint and the transverse curvature is zero throughout the fold;
rium path from a generalized load-displacement space of the tyihe original straight parts remain straight, the fold angle of em-
discussed by Seffen and Pellegriid. The final relative rotation brace and the relative end rotation are the same, and stretching
between the ends is arbitrarily specified, and in Fig) & is = effects can be neglected along with twist. Although these assump-
radians. tions have been extracted from the behavior under end-wise com-
At the start of the second stage, both reference nodes are rgtession, it can be expected that they also apply for the case of
tionally constrained. A concentrated load is specified on the trartepelling end forces.
lating reference node in a direction towards or away from the
opposite node, and is incrementally increased from zero using a
standard static solution procedure from the ABAQUS library. Fig; . .
ure 3b) indicates the deformation due to end forces that compress Theoretical Analysis
the fold with § as the relative displacement between ends. TheA theoretical model for the quasi-static response of a tape-
longitudinal radius of curvature has clearly decreased throughayring to symmetric end-wise loading is now proposed. This is
the fold and, even fob of the order ofR*, the straight parts are formulated in terms of potential energy expressions for the work
undeformed but increase in length and the fold region subtendigne by the end loads and the strain energy stored in the folded
the same angle. region according to thecurrent geometry of deformation; a
The tape-spring geometry and material properties are listedsimple, but effective variational approach is used to admit a
Table 1 and are typical of an everyday mild-steel carpenter tagégsed-form expression for the longitudinal radius of curvature.
except forE, the Young’s modulus, which is three times larger Consider Fig. 5. InitiallyP and 6 are equal to zerdyl* is the
than normal. Asé increases, the end couples reverse directiasouple at both ends, and the fold has rad®is In the deformed
leading to compression in the free edges of tape near to the ergtsafiguration,P and & are nonzero and the corresponding end
For values ofs greater than those reported here, local bucklingouple for fixedd is C. PointA is the midpoint of fold. The angle
took place at the ends for a lower value f by artificially in-  subtended by a general poig,in the fold from the line of sym-
creasingk, this is avoided and the deformation is confined to thmetry throughA is 8 andr=r(g) is its unknown longitudinal
folded region. radius of curvaturep extends to values of/2 on either side.
Also tabulated ar@ andR*, the latter value being computed at In the directions showrR? andC are defined as positive. Their
the end of the first deformation stage. Note tR&tdiffers fromR  current potential energy is simply P 3, sinceC does no work if
by approximately 15 percent, thereby confirming tRé&t- R with  the end rotation does not change. An expressionéfas now
this more accurate approach. determined. Observe first that the original separation between the
More insight is provided in Fig. @), which indicates the varia- €nds isX defined by the relationship
tion in the ratio of total bending strain energyyg, to total P 0
stretching strain energys, with 6. The ratio is large suggesting X=[L—R* #]cos= +2R* sin-. 2
that stretching effects are small in comparison to bending effects. 2 2
The former can be attributed to the_ploy regions where the_re iSTRe current separation is the distancequal to
small Gaussian curvatur@ll]); as é increases, the ploy regions
move further away from the ends and their deformation remains 0 o/2
unchanged but, overall, bending effects increase, as dges 2\L cos; +f r cospdg, @)
This is readily seen in Fig.(8), which plots the longitudinal oz
curvature change along the tape whérs equal toM* and at where a dimensionless length for the straight parts including the
some stage during compression; a dimensionless intrinsic lenglby regions)\, is calculated by subtracting the current arc-length
parameter i measured from the fixed end, see Figh)3 The of fold from the overall length, that is

26 0.08
2 / 0.06 ;
S / 0.04 (7 ™\
522 - z / : : \
0.02] i 3
2 l : X
0 YAY wy
18 0.2 0.4 0.6 08 % 02 04 06 08 1
5/R
(@ (b)
Fig. 4 Comparison of behavior for end-wise compression: (a) ratio of the bending strain energy to stretching strain energy in
tape-spring during end-wise compression; (b) variation in longitudinal curvature along a compressed tape-spring: solid, constant

bending moment M?*; dashed, compression under P
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Similarly, to account for the initial conditions, it is necessary to
define another functiod, of r using Eq.(5), that is

012

Jl(r):C1+f /Ql(r(ﬂ))dBZO, (11)

-0/2

with

=R*|2 si o 4 o 123
c1= sin5— 0 cos5 |, (129)

. _— . . . o
Fig. 5 Definition of parameters associated with deformation of Q,=r|cos;—cospB|. (120)

a tape-spring 2

SinceJy andJ; are both functions of (8), their integrand parts
can be combined into a single composite functie(r,): the con-
stantsc, andc, do not have any bearing on the variational pro-

AL= 1 L— fﬁzm rdg|. () cedure which follows.
2 B=—0I2 This composite function needs to be strictly defined by

Substituting Eq(4) into Eq.(3) noting thaté=X—Xx, subtracting F=170Qo+ v1Q4, (13)
the resulting expression from E®) and tidying up yields
and the variation withr is implied. y, and y, are nonzero, posi-
0 + o 5 tive multipliers that are either constants or functions determined
_9/2r B from minimizing F on the initial conditions and on nonzer
Using Egs. 1() and 12b), Eq. (13) is fully written as
For the fold, an expression for its potential strain energy of

[%
cos-—cosg|d

2 si / 0
sin cos 5

_p*
6=R > >

bending per unit surface area without twist([i$2]) DRa (1 r 2v 0
F=vo|—— |-+ 52+ | —Pr| cos;—cosg
D 2 r R R 2
E[K|2+ Kt2+2VK|Kt], (6) 0
o . + y1r| COS5;—COSS]|. (14)
where the longitudinal curvature change is now equal to - 2

call k,= = 1/R for opposite and equal-sense bending, respectively.
Integrating Eq.(6) over the surface area of fold yields for
opposite-sense bending

D (?2]1 N 1 N 2y
2] JPTRTR
Multiplying —P by Eq. (5) and adding to Eq(7) results in the Can never have a minimum far,;>0. Likewise, if y;=0 then
total potential energy expression for the deformed tape-spring as p=

Before either multiplier can be determined, some sanity checks
are essential. lfy, is equal to zero, then

JF 0
Rardg. 7 o = 1 cos5— cosp

> =0 (15)

DRa 1 1 0
02 [ DRa [ 1 r 2y 0 E:’yo T(—r—z"r? _P(COSE_COS,B) =0 (16)
f {T(F—i_ E—F E)_Pr(COSE_COSB) d,B
- o1 admits for zero end force=R and is invalid, andy, cannot be
0 /] Zero.
+PR*| 2 sin;— 6 cos5|. (8) The simplest function for either multiplier is a nonzero con-
2 2 stant. Choosing a value of, equal to 1, substituting into E¢14),

In order to admit a solution far(B), Eq.(8) needs to be mini- differentiating the resulting expression with respect tand set-
mized subject to the initial conditonB=0 when §=0 andr ting equal to zero leads to
=R*. Since § is also a function ofr in Eg. (5), the required

approach follows a procedure found in Hestelie for minimiz- i - & _ 12 +=|-P cosf— cosB|+ v, cosg— cospB
ing simple integrals withntegral side conditionsNote that al-  dr 2 r< R 2 2
thoughC does not appear explicitly in E€B) it reenters implicitly -0 17)

by fixing 6, an expression fo€ is derived later.
The total potential energy is, first, re-expressed as a fundjon sy situting for the initial conditiong?=0 andr =R*, and solv-
of r in terms of the constant and integrand expressions as follovyﬁg for v, explicitly gives

012

Jo(r)zco"‘f Qo(r(p))dp. 9) _
- 612 Y1

7] -1

cos;—cosp

A (18)

DRa( 1 1)

Comparing to Eq(8) then An expression for is obtained by replacing; in Eq. (17) with

0 0 Eq. (18) and rearranging to give
Co=PR*| 2 sin;— 6 cosz|, (108)
2 2 % 2 —1/2
—R*. — __
DRall r© 2v 0 r(B)=R*-| 1+ DRa (cos,B cosz> (19)
= |TTRTR —Pr cosz—cosﬁ . (100)
r The above expression can be shown to be the same for equal-

Note thatQ), must be a continuous function and obviates the neagnse bending and=R* whenP is equal to zero.
for r(B) to be smooth, as would be expected for a fold with no Finally, satisfaction of moment equilibrium about poiftin
sharp changes in geometry. Fig. 5 yields for the end couple
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P 012 Eqg. (5), which is numerically integrated over the rangemw,m)
C=M,-— P( AL cos; + J r sinﬁdﬁ) . (20) via the software package MATLARL5] to yield the correspond-
ing value of é.

The bending momeni , at A is derived from Eq. (a) with « The correlation between theory and the exact solution is ini-
=1/ for =0 and\ is determined from Eq(4). Note that Eq. tially close but diverges a8 increases. The performance is none-
(20), upon substitution of with Eq. (19), cannot be integrated to theless encouraging, even at large end displacements, given the
yield a closed-form expression fd€; the process needs to beassumptions of the theoretical model.
tackled by numerical means, as is now performed in comparisonA number of snap-shots of the change in longitudinal curva-
to finite element results. ture are presented in Fig(l§ according to the indicated values

of P. The lengths of the straight parts, as given by &), were

first calculated to define the regions either side of the fold
5 Results and Discussion with assumed zero curvature change; the end points of these

The initial geometry and material properties are the same as/fieS then discontinuously connect to the variation due tdrbm
Table 1, and the tape has been folded with opposite-sense cufgd: (19- As can be clearly seen, the difference between theory
tures. The results from two tests are now presented for, FPrst,and finite element results is virtually negligible in most of the
increasingly positive and, secorid,decreasingly negative. In so fold. o ) . N
doing, note that the quotient term inside parentheses irf1Ryis The variation ofP with end-coupleC is plotted in Fig. Ta).
dimensionless and it is convenient to normalize fofaed mo- 1he numerical procedure for calculati@gn Eq. (20) was similar
meny in a similar way. However, sinc®* depends on finite to that employed fow. This figure shows that a3 increases, in

element analysis, it is replaced with the natural paranfetézad- order to maintain a fixed relative rotation between the ei@ls,

0

ing to the following “barred” dimensionless groups: decreases and Rt=0.487 the end couple is zero. The correspond-
ing end displacement from Fig(® is approximatelys=0.36R.
= E = i 1) Since the angle of fold arc-length is, an “average” radius of
" Da’ " Da’ fold is (2R* —0.36R)/2, which is less theiR*. Thus, it is incor-

rect to presume thaR* can be simply found in this way, for
xample, when holding the ends of tape between the tips of fin-
'g' rs and measuring the separation distance. The subsequent value
of M*, Eqg. I(b), may also be inaccurate. This may seem trivial to
(a) End-Wise Compression. Figure Ga) indicates thé¢P,5) highlight, however, dynamic models of the deployment of tape-
behavior. The theoretical curve was computed by, first, specifyiisgring systemg/1]) equateM* to the torque applied by the tape-
a piece-wise variation if? up to the maximum value from finite spring fold to the rest of the structure and, therefore, needs to be
element analysis. For each valueRyfthe constant terms in Eq. accurately measured. At larger valuesithe end couple acts in
(19), are known and the resulting expression is substituted intiee opposite direction, as discussed in Section 3.

Likewise, & is normalized by dividing byR, i.e., 6=5/R and a
measure of dimensionless longitudinal curvature compares
current value to the initial fold curvature by definirg=R*/r.

0.7 — 2
=
P af ;
0.6 4 15 Fabh"
o . & L
0.5 o 4 Py
[n) [prr 00§\
4 ) 1 ¥
ID.O'* g T vy
g, g 1] u
03 7 * 05 i H
02 ! :
0.1 5 N+ g WV
% 0.1 0.2 3 0.3 04 05 03 02 04, 06 08 1
(a (b)
Fig. 6 Comparison of behavior for end-wise compression: (a) force-displacement response of a bent tape-spring with geometry
in Table 1. The continuous line is the finite element analysis result and the squares denote the theoretical prediction. (b) Variation

in longitudinal curvature change,  «;=1/r, within the fold for P=0N (solid ), P=1.266N (dashed ), and P=7.020N (dashed-dot ).
FEA given by thick lines, theory as symbols and thin lines.

0.7 - 0.7
06 E\“-\\' : 0.6 5 }9’
05 C 0.5
0.4 04 ‘:‘}y
Ry Ry Py
0.3}~ 3 yu;
0.2 N\s 0.2 iy i
0.1 \ 0.1
45 0 OC§ 1 15 % 12 14 1.6 18
Ki,A
(a) (b)
Fig. 7 Comparison of behavior between end loads and maximum longitudinal radius curvature: (a) Variation in end couple with

applied force: FEA (solid ); theory (squares ). Geometry as in Table 1. (b) Variation in longitudinal curvature at the fold mid-point,
K, 4 With end force P. Line-style as in part ().
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Fig. 8 Comparison of behavior of repelling end-wise forces: (a) Variation in
continuous line; theoretical prediction is squares. Geometry as in Table 1.

force P with end displacement & FEA given by

(b) Behavior of longitudinal radius of curvature for

P=0N (solid ), P=—1.318N (dashed ), and P=—2.644N (dashed-dot ). FEA is thick lines, theory is thin lines and symbols.

In addition, Fig. Tb) indicates that the maximum longitudinallaunch, the foregoing analysis may be used to predict the degree

curvature(at the fold midpoink for zero end couple is some 500f distortion

in the softer folds and, hence, the implications for

percent greater thanR? for the tape-spring of this study. Hence safe stowage and correct deployment.

the maximum strain in a fold supported by end forces alone is

much greater than in the case of end couplés and may lead to Nomenclature

unforeseen and permanent deformation in the material. Again, th

discrepancies between theory and computation in both plots of o Cé _
Fig. 7 are very small. D =

(b) End-Wise Tension. The force-displacement plot is E =
shown in Fig. 8). The procedure for obtaining the theoretical F =
curve is exactly the same as in Figaf but with negative values  Jo, J1 =
for P. The correlation between results is, again, very good at low L =
values ofs, and marginally diverges at higher values. Figufe) 8 M =

indicates that the fold curvature rapidly decreases towards the M*

constant potential energy terms
tape-spring end couple

flexural rigidity= Et3/12(1— v?)
Young'’s modulus

composite function

variational functions
tape-spring length

bending moment

= fold moment under end couples

midpoint: as the magnitude ¢f increases, the distance between P = tape-spring end force
points in the fold and the tape-spring end decreases, and the r = longitudinal radius of curvature
moment-carrying capabilities are reduced. This manifests as a R = transverse radius of curvature
steadily reducing gradient in th@, &) response in the previous R* = fold radius under end couples
figure. t = tape-spring thickness

Finally, the maximum magnitude fd? is given by noting that X, X = tape-spring end separation
the curvature at the midpoint cannot be less than zero. InvertiggmboIS
Eq. (19) and setting equal to zero wifB=0 defines the inequality
constraint a = subtended angle of cross section

o ) B = fold angular coordinate
2PR 1— 9 21 =pPo- E(E 1 Yo, y1 = variational multipliers
DRa €05 ' 2\R*) 1-cog0/2]’ 6 = linear displacement between ends
(22) & = intrinsic tape coordinate
making use of Eq(21). For 6=, Eq. (22) yields P> —0.370, AN :;;inmgeltrtjsc:gnnal\‘le:\srl?etr:ansverse curvature changes
> S = gth of straight parts

but there is no guarantee that the largest \_/alue can be _carrled in 9 = fold angle of embrace; relative end rotation
practice without the singly folded tape-spring now forming two — Poisson’s ratio
distinct folds. The finite element procedure was unable to captur, _ f :
this separation so that the results of Eg2) could be verified; flo, Q1 = potential energy integrands
nonetheless, the above calculation provides a simple upper-bound
estimate on the maximum load. References
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Introduction

This paper is the first of three devoted to the equilibrium analy-
sis of a finite length prismatic elastic cylinder whose cross secti
may be arbitrary in its geometry and may be composed of an
number of distinct materials. Each constituent material may hay:
linear elastic mechanical properties exhibiting the most gene
form of rectilinear anisotropy. The materials are perfectly bonde
so that full intersurface kinematic and traction continuity is as-
sured. The cylinder’s lateral surface is traction-free. The two ends
of the cylinder are acted upon by tractions which are presumed
be prescribed on a pointwise basis. These traction states lead tg g
axial force, bending moment, torque, and flexuteansverse 0
sheay force, and they must occurred in such a way that overd]|
equilibrium of the cylinder is maintained.

Specializing the above problem description to a homogeneou
isotropic cylinder gives the celebrated Saint-Venant's proble
The Saint-Venant'’s solutions or that to the relaxed formulation
Saint-Venant's problenf[1,2]) are solutions in which the point-
wise specification of tractions on the ends was replaced by inte-
grals representing the axial force, bending moment, torque, a
flexure force. Saint-Venant asserted that differences between trae:

On Saint-Venant’s Problem for
an Inhomogeneous, Anisotropic
Cylinder—Part I: Methodology
for Saint-Venant Solutions

In this paper, the first in a series of three, a procedure based on semi-analytical finite
elements is presented for constructing Saint-Venant solutions for extension, bending, tor-
sion, and flexure of a prismatic cylinder with inhomogeneous, anisotropic cross-sectional
properties. Extension-bending-torsion involve stress fields independent of the axial coor-
dinate and their displacements may be decomposed into two distinct parts which are
called the primal field and the cross-sectional warpages herein. The primal field embodies
the essence of the kinematic hypotheses of elementary bar and beam theories and that for
unrestrained torsion. The cross-sectional warpages are independent of the axial coordi-
nate and they are determined by testing the variationally derived finite element displace-
ment equations of equilibrium with the primal field. For flexure, a restricted three-
dimensional stress field is in effect where the stress can vary at most linearly along the
axis. Integrating the displacement field based for extension-bending-torsion gives that for
the flexure problem. The cross-sectional warpages for flexure are determined by testing
the displacement equations of equilibrium with this displacement field. In the next paper,
the cross-sectional properties such as the weighted-average centroid, center of twist and
shear center are defined based on the Saint-Venant solutions established in the present
paper and numerical examples are given. In the third paper, end effects or the quanti-
fication of Saint-Venant's principle for the inhomogeneous, anisotropic cylinder is
considered. [DOI: 10.1115/1.1363598

elementary mechanics of material theories for the extension,
ending, torsion, and flexure of slender members as well as delin-
ate their ranges of validity.

With integral end conditions in the relaxed formulation, many
cémpeting solutions are possible as there are limitless end traction

ﬁtes capable of producing identical force and moment resultants.
th the Saint-Venant solutions are distinguished by certain char-
acteristics. Clebsc[3] indicated that the resultant traction vector
n any material plane normal to the cross section of the cylinder is
rallel to its generator. For extension, bending, and torsion,
igt [4] indicated that the stress and strain fields are independent

e axial coordinate, and for flexure, these states can vary at
ost linearly along the cylinder’s axis. Sternberg and Knosgs
showed that the Saint-Venant extension-bending-torsion solutions
far a homogeneous, isotropic cylinder produce absolute minimum

nowles provided a proof of a minimum strain energy state for

e special case of Poisson’s ratio equal to zero.

Herein, Saint-Venant solutions, i.e., solutions to the relaxed for-
lation of the Saint-Venant problem, for an inhomogeneous, an-
tropic cylinder are constructed. For this task, two sequential
blems are addressed according to the decomposition of these

%fain energy states. For the flexure problem, Sternberg and

tion states according to his solutions and any other equipoll d cross section force and moment resultants into the followin
traction state were confined to regions at the ends of the cylind P 9

i.e., Saint-Venant's principle. The Saint-Venant solutions for h _Io ngv(el()j iéﬁ??ﬁg[ t;?crz];ljI;?r?i-t?:g)rgeanmtﬁ()jifsle)l(:cr:ﬁq\éi?ztlzr;ions
mogeneous, isotropic cylinders occupy a very important place ?C}y ) y P d

; ' : . : af:equilibrium are used in the analysis. The solution methodology
structural engineering. They validate the kinematic hypothesescaflls for the displacement fields to be set forth at the outset. Each

Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF of the fields for the two sequential problems can be put into two
MECHANICAL ENGINEERS for publication in the ASME QURNAL OF APPLIED esseljtlal p_arts{;L) a primal f"_eld and2) cross-sectional wgrpages.
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, Octlegan’s rational schemg6]) is used to generate these fields, be-

7, 1999; final revision, July 21, 2000. Associate Editor: J. W. Ju. Discussion on teause it is systematic and does not require any other a priori
paper should be_addr'essed t'o thg Editor, Professor Lewis T. Wheeler, Departme §§umpti0ns, such as those used in the semi-inverse method. By
Mechanical Engineering, University of Houston, Houston, TX 77204-4792, and wiJl . . . . . . .

be accepted until four months after final publication of the paper itself in the ASMBIS SChem§1 the prlmal field for exten5|on-bend|ng-tprsmn IS Pb'
JOURNAL OF APPLIED MECHANICS. tained by integrating the most general form of rigid-body dis-

376 / Vol. 68, MAY 2001 Copyright © 2001 by ASME Transactions of the ASME



placement with respect to the axial coordinate. That for flexure isogeneous, anisotropic cylinder even though all theoretical con-
obtained by integrating that for extension-bending-torsion. Thes&lerations are the same. Comments on the differences are given
displacement fields are expressed in terms of unknown amplitudethe Concluding Remarks section.
coefficients. It is mentioned that these fields may also be derived
from Voigt's characterization of the Saint-Venant problem, i.e.,
that_ for_extension-bending-torsion is o_btained by ir_lte_grating ﬂ@emi-Analytical Finite Element Equations
strain-displacement relations for a strain state that is independent . i . i ) )
of the axial coordinate and that for flexure is obtained by integrat- Consider a prismatic cantilevered cylinder of lengtiwith an
ing the extension, bending, torsion field once with respect to tiébitrarily shaped cross section of perfectly bonded linearly elastic
axial coordinate. Testing the governing equilibrium equatiorisotropic materials as shown in Fig. 1. [Rtenote the open
with the extension-bending-torsion and flexure displacement fielt@gion occupied by the cylinder witb as its lateral surface. L&t
results in systems of equations for the cross-sectional warpag&§iote a generic cross section of the cylinder whose lateral bound-
that may be seen to be driven by the primal field. Once Yy curve isS,. The surfaces at the tip and root ends are
warpages are found, the stress components can be determineldgntified asTIl, and II,, respectively. Establish right-hand
terms of the displacement amplitude coefficients. By integratirfgrtesian coordinatel, y, 2) and take the origin at some point
the appropriate stress components over the cross section, cr@ésthe tip endIl;. The mechanical variables of the problem
sectional stiffness relations are formed that enable the resultd@f Stress, strain, and displacementx,y,z),e(x,y,z),u(x.y,z),
forces and moments to be related to the unknown displacemfith components O'Z[O'xxxo'yy10'2210'yzvo'><zra'xy]Tx €
coefficients. =[ €xx:€yy €22 Vyz: Yxz: Yayl '+ U=[U,0,W]". The constitutive

From the Saint-Venant solutions, cross-sectional propertieguation for a given anisotropic material in the cross section has
such as the centroigbr stiffness weighted centroidthe principal the form o=Ce, where the symmetric (§6) matrix C contains
bending axes, the center of twist and the shear center cantbe 21 independent elastic moduli.
determined. These issues are addressed in Kosmatka, Lin, anth the present version of the semi-analytical finite element
Dong [7], the second paper in this three-part series. End effectethod, the cross section of the cylinder undergoes discretization.
are considered in Lin, Dong, and Kosmaflg], the third of the In each element, the displacement fiald taken in product form
three-part series, where a method for the quantitative analysisoffinterpolation functionsi(x,y) over the cross section and nodal
Saint-Venant's principle is given. Any pointwise specification o¥ariables (,,u, ,u,) of unspecified functions of the axial coor-
end tractions can be taken as the sum a Saint-Venant field andiratez. In the computer code for the examples in the two subse-
self-equilibrated stress state. This self-equilibrated stress state garnt papers, both six-node triangular and eight-node quadrilat-
be represented by the eigendata of the spectral representatioeraf elements are used, so that the cross-sectional interpolations
the matrix operator in the governing equilibrium equation. Thare complete second-order polynomials. The displacement field
specific case of end effects in restrained torsion was given byx,y,z) has the form
Kazic and Dond9]. _

The present procedure for Saint-Venant solutions differs sig- U(X,Y,2) = Ne(X,Y) Ue(2) (1)
nificantly from that used by Kosmatka and Doftf)] for a ho- or

Applied Forces and Moments
at Tip End

Sign Convention for
Internal Resultants

Fig. 1 Coordinate system for anisotropic cylinder
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u(x.y,2) n(x,y) . . uy(2) Note thatK, andK3 are symmetric, whil&K, is antisymmetric.

e u The specific roles of these stiffness matrices can be inferred from
v(Xxy,2) = - n(x,y) : Uy(2) . their dependence o, andb,. As K is constituted fronb,, it
w(X,y,2) . . n(x,y) ] \ Uw(2) governs generalized plane strain, whilg formed fromb, relates

(1b) to behavior complement to generalized plane strain. Stiffness ma-

. . . rix K, is the agent that couples these two behaviors. These op-
The separation of the dgpendent yarlqbles V\.”th one part statec Htors are the same as those in the governing equations of Kazic
terms of an assumed field occupies in an intermediate posmg1

X ) h X Ad Dong[9] for the analysis of restrained torsion and Taweel,
between an exact soll_mon and a Ritz/Galerkin technique, a pro?_%ng an%[ Ilazic[lz] for r)éflection of monochromatic waves at
dure due to Kantorovich and Krylov 1]. ’

With this partitioned dependence of displacement fidld the the free end of a cylinder. The derivation follows standard iso-

differential strain-displacement operators can be separated iﬁﬁﬁ&nie:r;ﬁé”;;f rgﬁ?&?;nrggtggﬂgggy’ and further details may be
two parts. '

In the relaxed formulation, force and moment resultants are
e=L,u+Lu (2) employed rather than the tractions on a cross section. On a generic

. . . ) cross sectiodl at some arbitrary axial coordinat these force
where L,, and L, are matrices of linear differential operators;nq moment resultants are given by

given by

[ J 1 [ ’ 7 f Jo'zxdx dy=P.(2) J’fgzﬂdx dy=My(2)
& . . . H H
7 f f ,ydx dy=P,(2); f f o, xdx dy=—M(2) (9)
3y ) ) 7 11 11
. . . 0z
x dy=P,(z X— dx dy=M,(z
Lo=| | Le e f fnozzd y=P.(2) f fn(ozy 05y)dx dy=M,(2)
y 9z This equation can be recast in compact form as
ax 7 f j hTodx dy=F(2) (10)
1
PR 0z _
I W Ix i . . ] whereF(z) andh(x,y) are given by
T(7) = _
Substitution of Eq(1) into Eq.(2) gives the strain-transformation F(2)=[Px.Py.P;, My, =My . M,] (1)
equations as M. ]
e=bju.+boug, 4
where - -1 y x
- - - - h = 12
N« . . . . . (X'y) 1 X ( )
Ny 1 -y
= ; = . 5 . S I N .
! . <Ny 2. on ®) In replacing the pointwise specification of the end tractions by
n n their force and moment resultants, the form\&f in Eq. (6) is
X written as
LMey N L

. o . . Ve=—F(0)a= —{P,a;+ P,a,+ Psa;+M;,a
The governing equilibrium equations are variationally derived E 1(0) {P12; P, Paas + Msa,

from the theorem of minimum potential energy in the form of _ |\72a5+ Maas}n (13)
1

1 L
6(—f [f f €' Cedx dy]dz+vE
2 Jo i

whereVg represents potential energy of end tractiondbn As
the variational process oviz gives boundary data only, its appro-
priate form for Saint-Venant solutions is deferred until the discu
sion of boundary conditions. Inserting straiaedor all elements
into Eq. (6) and carrying out the variation leads to the following
governing equilibrium equations for the anisotropic cylinder:

KU+ KU ,—K3U=0 @)

=0 (6) wherea; are displacement amplitudes of the Saint-Venant solu-
tions to be presented. They are associated with the cross-sectional
deformational measures corresponding to these force and moment
resultants. At the root endll,, a fully restrained condition is
assumed so that kinematic boundary conditions are met in the
Variational process.

Rigid-Body Displacements

There are six distinct rigid-body displacement modes for the

— T . . . . . .
where U=[U,,U, ,U,]" denotes the assembled ordered nodaljinder, which satisfy governing E7) identically. Furthermore,
displacement components and system stiffness matriqégy lead to zero strains when substituted into strain-

Ky,K3,K3 are given by transformation Eq(4). These two sets of relations are useful iden-
N tities in the solution procedure.

[K11K21K3]:2 f f [(b;Cbz), Let M be the t_otal number of _n(_)des in a_given finite element
n=1 model. The matrix form of the rigid-body displacements can be

T - T set forth with the help of the following sixM column vectors
(b;Cb;—b;Cby), (b;Cby)Jdxdy. (8) R;.
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I 0 0 They are completely uncoupled with the extension-bending-

R={0} R={1,%- R.={ 0 torsion problem. It may be possible that these deformation modes
1 ol 2 01 v | will participate in the solution of Almangi13] and Michell[14]
1 (14) problems where tractions occur on the lateral surface.
0 0 -y Recasting displacement fie(d8a) in matrix form gives
Ry=1 011 Rs=1 015 Re=1 X U(2)=[®(2) + W ]a + Pre(2)age (18)
y X 0

] ) ) where®, andW¥, are (3V X6) matrices given by
where (,X,y) are column vectors of lengthl with unit entries,

: : 2
Figid-body cisplacoment veottlns(z) has the form B2 == 5N+ 2N, (19)
Urs(2) = Prparp=[ —zN;+ Nz]agp (15) and
where Wi=[ Y11t dha, s, s el (20)
Nl:[OlO’O’RZ,Rl’O]T; N2:[RlvR2'R3vR4'R5'R6]T (16) ai:[a|1,a|2,a|3,a|4,a|5,a|6]T

| Observe that®,= [Pggdz, which is the essence of |@s's
scheme. An inspection of the primal field terms associated with
a;3to a; in EQ. (18a) or its matrix components in Eq19) shows
that they express the kinematic hypotheses of elementary struc-
K5R;=0 (i=1,2,3,6; byr;=0 (i=1,2,3,6 (17a) tural theories of extension, pure bending, and unrestrained torsion.
The cross-sectional warpagégs can be established by substi-

and agg=[U,,v,,Wo,w1,w5,w3]" contains the six translational
and rotational amplitudes. Substituting Ed5) into governing
Eq. (7) and strain-transformation E¢) gives

K3Rs=—K2Ry; bara=bar, (170) tuting Eq.(18b) into Eq. (7) and equating all terms multiplied by
K3Rs= —K,R;; byrs=by,r, deformation coefficients,; to zero.
wherer;s are the counterparts &s on the element level. Kshi=KoR;; (i=1,2,3,0

_ _ . Kaha=KoRs—K1R; (21)
Problem |I—Extension-Bending-Torsion

. . . . Kaihs=KoRs— KRy

Problem | refers to extension-bending-torsion by applied trac-
tions on the end cross sectidh, . The displacement field for Observe that the right-hand sides of Ef1) involve the primal
Saint-Venant's solutions can be written as field @, , so that the cross-sectional warpages may be said to be
driven by the displacement field embodying the kinematic hypoth-
eses of the elementary structural theories. The warpages are elas-
tic responses due to cross-elastici®oisson ratipeffects and the
longitudinal shear warpages of free torsion. Note also ghaand
1, in Eq. (21) satisfy the rigid body identitie€l73 so that

1= —Rs; 2= —Ry. (22)

This result shows that the two longitudinal shear fielgls, and
Yyz» Which are associated witj; anda,,, vanish identically and
are not involved in Problem | for extension-bending-torsion.
The solution to Eq(21) requires the inverse ¢f;. Because 5
+ E &y hiy(X,Y) twaX—wiZ+v,  (183) s singular due to the presence of rigid-body motion, it cannot be
=1 factorized without administering kinematic constraints. Four
W(X,Y,2)=(a,3+asx+a,,y)z rigid-body modes, the three translations along the coordinate di-
rections and a rotation about tkzeaxis must be suppressed from
K3 prior to its inverse.
+ Z &y iw(X,Y) + 01y + 0oX+W, Once the nodal warpagek,;s are found, the functional depen-
=t dence of displacement fiel(l8b) is completely defined. Using
where a; (i=1 to 6 are displacement amplitudes andstrain-transformation Eq4), identities(17b), and the anisotropic
($iw v » i) the components of the cross-sectional warpagesiress-strain relation, the strain and stress components in an ele-
The coefficientsa,; and a,, are associated with longitudinal ment can be written as
sheara,; with extensiona,, anda,s with bending, and, s with
torsion. That part of the field devoid of warpa?ge functions and €=[bony+ by Wiela =[h+Db,Wc]a = €0y (239)
rigid-body displacement is called tipgimal field. The rigid-body
displacements U, ,v, ,W, ,@1,w,,w3) Were included for com-
pleteness sake. wheren, andW,, are the counterparts &f, and nodal warpages
Displacement field(18a) can be derived by integrating the W, for the given element. In Eq$23a), (23b), b,n, was replaced
strain-displacement equations for a strain field independentlbf by h, which is possible by using identitjl 7b) and recalling the
can also be obtained by integrating the rigid-body displacemettiteria that preserve rigid-body displacements and constant strain

72
u(x,y,z)=a;z— a|5?_ 6y Z

6

+ 21 Qi Py (X,Y) — wgy — w2+ Ug
“

2

U(X,y,z):a|22_ a|47 +a|6XZ

6

6

o=Cea = 0pqy (23b)

with respect taz as shown by lgan [6]. modes in isoparametric finite element mappings, i.e.,
The roles of the two longitudinal shears and their amplitude
coefficientsa;; and a;, need clarification. These longitudinal 2 n=1; 2 NX =NX=X; 2 ny;=ny=y. (24)

shears appear in EqL8a) as a direct consequence of integrating

the most general form of the rigid-body displacement. They pro- Tne resultants on the end cross sectlép for Problem 1 in
duce shear tractions on the lateral surfBehich violate the side orms of the vectoE in Eq. (13) takes the form

conditions of the Saint-Venant problem. In the present solution

procedure, carrying these two modes along produce null results. F,=[0,0P3,M;,—M,,M3]". (25)
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These resultants can be found by integrating the stress compdiere €, and o, were defined in Eqs(23a) and (23b), respec-
nents @,,,0x;,0y,) of EqQ. (23b) over each element's cross-tively, ande; and o, are given by
sectional area as indicated by Efj0) and summing the contribu-

tions of theN elements of the total cross section. €=0,Wc+b, W (339)
N N 0,=Ce=Cbh,W .+ Cb,¥V,,. (330)
T — T
Zl J’ fn h UdXdy_Zl f fn h'Clh+Db,¥c]dxdy|a Integrating the stresses over an element’s cross section according
! ! to Eq.(9) and summing the contributions bfelements define the
=F (26) array of resultant forces and moments on a generic cross section at

. . . . any locationz along the cylinder’s axis as
or in the form of a cross-sectional stiffness relation y g Y

0 0 aj, 0 F(z)= JJhT[Zcro-Hrl]dxdya.,-k thTa-odxdy by,
(2x2)  (2x4) (2x1) (2x1) n n
6'>:|6) 62'1)2 :5'>:<|1)H 0 b ap [ | Fi _ n kb a1
(exox ( (ax2)  (ax1) ] L@x1) (4x1) =2z(ray) + (18 + by (34)

(27a) wherek; was given by Eq(27a) and the expanded form @, is
shown in Eq.(40a).

where the expanded form of its nontrivial porti is 1 . . _—
P POrt@fo The coefficients im, are determined from global equilibrium

K33 Kiza Kizs K|3g as P, considerations. Differentiating E¢34) and noting that
Kiza Kiaa Kias Kiae| | Qg M, oM oM
a ) -™m - (2M) == 25 —y:*P1 (35)
Kizgs Kigs Kiss  Kisg 15 2 Jz Jz
a M
Kize Kiae Kise Kies 16 3 shows that
Note thats,;,, is @ symmetric matrix. The absence of terms in the IF(2)
first two rows and columns of the ¢66)x, matrix further sub- ——=F|,=[0,0,0P,,P,,0]" (36)
stantiates that the longitudinal shear components play no part in 9z
extension-bending-torsion. Solution of EQ7b) gives so that
A= KipsFip - (28) 0 0 YR 0
The coefficients ok, and its inverse contain a number of prop- gy = Fly s (@x2) @ Jexy (] exD (37)
erties related to the cross section, such as the weighted-average ' "' ' !l 0 Ky Ap Fip |
centroid, principal bending axes, center of twist, etc., and these (4x2)  (ax4)] L (4x1) (4x1)

properties will be considered in the next paper of this series

three papers. %e solution for amplitudea,, 5 to a5 in &, is given by extract-

ing the second equation of the partitioned matrix in By) and
solving it.

Problem Il—Flexure Kipb@ib=Fjp (38)

Saint-Venant flexure involves a stress field that is at most linedhe coefficients,;; anda,;, have no role in the flexure problem.
with z. The appropriate displacement field according tcahés With the coefficients ire; known, the coefficients i, can be
scheme[6] is obtained by integrating the displacement field ofletermined from Eq(34) by invoking the following conditions at

Problem | once with respect to give z=0,
U(x,y,2)=[®@(2) +z¥+ W, Ja, +[®(2) + ¥ (2) + ¥, ]b, F(2)|,-0=Fi=[P1,P,,0,0,0P,e,+ Pley]Tv (39)
+ ®rp(2)arg (29) where the ternmP,e,+P,e, represents the torque &; and P,

because they may be acting at distangeande, off of the shear

where®), = [®,dz. There are six new warpage functions¥),  ~onter. Atz=0, Eq.(34) in expanded form appears as

and two new sets of displacement coefficieptandb,; .
0 0 b||a 0 Kjjab 0

= T
\I’H*[ipnldﬂnb !¢II6] (2x2) (2% 4) (2x1) (2x2) (2% 4) (2x1)
ay=[ay1,a2, " 6] (30) 0 Kipb by Kiba Kibb Qip
(4xX2)  (4xX4) (4x1) (4xX2)  (4xX4) (4x1)
by =[by1.by2, - ,byel
To determine the warpage functions, substitute &§) into (E'X'él‘)

Eq. (7) and set all terms multiplied by coefficiends andb,, to = (40a)

zero. Two sets of equations arise. One set is identical td g, 52?)
which verifies that the warpag¥, is the same as that of Problem
I. The other set|, is found by solving the following equation: or
Kahi =K Ri+ Ky (i=1 to 6). (31) K1ab1b=Fuia ;s KbbPib + &ibb@1n = Fip - (400)
This equation shows that the flexural warpages are driven by thghough it is not obvious in the form given, the first of E¢0b)
primal field and the warpages of Problem 1. is identically satisfied. Upon its expansion, the results repeat that

Substituting displacement fiel®9) into strain-transformation which are contained in E438). The second of Eq40b) enables
Eg. (3) and the anisotropic constitutive equations gives the ehe solution ofby, .
ement’s strain and stress fields as

biib= — KipbKiibb& b — KipbFiib (41)
e=[zeyt €]a + &b (329)

The coefficientsh;; andb,;, do not have a role in the flexure
o=[z0oy+ o1]a, + ogby, (320)  problem.
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It should be emphasized that the form of E89) implies that In the next paper, the cross-sectional properties of an inhomo-
the flexure forces pass through the origin of coordinate systemge@neous, anisotropic properties are discussed. In the third com-
the tip end, which may not coincide with the shear center. Fpanion paper, quantitative analysis of Saint-Venant's principle is
flexure forces applied elsewhere, a torsional momépnimust be considered.
included which is reflected in the sixth component in E3f). A
more general discussion of the shear center is given by the next
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On Saint-Venant’s Problem for
an Inhomogeneous, Anisotropic
1.8 kesmatka | Gylinder—Part Il: Cross-Sectional

Department of Applied Mechanics and -
Engineering Science, P p t
University of California, ro e r I es
San Diego, CA 92093-0085
Mem. ASME Cross-sectional properties of a prismatic inhomogeneous, anisotropic cylinder are deter-
mined from Saint-Venant solutions for extension-bending-torsion and flexure, whose
method of construction was presented in a previous paper. The coupling of extensional,

H. C. Lin bending, and twisting deformations due to anisotropy and inhomogeneity leads to some
very interesting features. Herein, it is shown that for an inhomogeneous, anisotropic
S. B. Dong cylinder whose cross-sectional plane is not a material symmetry plane, distinct modulus-
Mem. ASME weighted and compliance-weighted centroids and distinct principal bending axes are
possible. A line of extension-bending centers is given on which an axial force causes
Civil and Environmental extension and bending only but no twist. Two shear centers are given, one using the
Engineering Department, Griffith-Taylor definition that ignores cross-sectional warpages and the other by stipulat-
University of California, ing a zero mean rotation over the cross section. The center of twist is discussed, and this
Los Angeles, CA 90095-1593 property depends on root end fixity conditions that are prescribed in terms of their mean

values based on integrals over the cross section rather than by a pointwise specification.
While these shear center and center of twist definitions have some rational bases, it is
recognized that other definitions are possible, for example those based on modulus or
compliance-weighted integrals. Two examples, an angle and a channel, both composed of
a two-layer =30 deg angle-ply composite material, illustrate the procedures for deter-
mining these cross-sectional propertiefDOI: 10.1115/1.1365152

Introduction flexure of a homogeneous, anisotropic beam. Many analytical is-

sues on the Saint-Venant problem for anisotropic cylinders were
iscussed by Lekhnitskii7], but no solutions were given for a
8mp|etely anisotropic cylinder. Jas [8-10] also studied this

: S . ST Bblem and set forth a general procedure for generating the

relaxed form_ulatlon where the pointwise traction specification oper displacement fields for the extension-bending-torsion and

replaced by integrals representing the end forces and momentsy 4y re problems. His methodology was applied in DKL

method for const.ructing Saint-Venant's solutions for a cylinder 14 gefine the various cross-sectional properties, two general
whose cross section may be composed of any number of perfeclly,dinate transformations are needed, a translation and a rotation
bonded anisotropic materials was presented by Dong, Kosmatkgout an axis normal to the cross-sectional plane. These transfor-
and Lin[1], hereinafter called DKL. Their method was based ofhations are used for locating the centroid and principal bending
semi-analytical finite elements with the displacement field eXxes. It will be seen that two distinct sets of these properties may
pressed in terms of nodal distributions and their correspondipg possible that are based either on the cross-sectional stiffness or
amplitudes. These amplitudes are related to the force and momggkibility relation. From the flexibility relation, a line of
resultants in the form ofross-sectional stiffness relatiaris this  extension-bending centers can be defined. The location of the
paper, attention is devoted to defining section properties, suchsagar center is considered. The traditional definition by Griffith-
centroids, principal bending axes, line of extension-bending cenaylor[11] of this property does not take the warpage of the cross
ters, center of twist, and shear center. The Saint-Venant probleaction into account. Because the Saint-Venant solutions provide
in itself does not address these topics, but the Saint-Venant soliarpages, other definitions of the shear center are possible. Lastly,
tions provide means for defining these cross-sectional properti¢ise center of twist is discussed. Examples are given to illustrate
A body of literature on finite element analyses of Saintthese cross-sectional properties for two inhomogeneous, aniso-
Venant's problem exists for homogeneous isotropic and anisiepic cross sections.
tropic cylinders. Herrmanf2] and Mason and Herrman8] ana-
lyzed the torsion and flexure of homogeneous, isotropic beamsgcapitulation of the Saint-Venant Solutions
arbitrary cross-sectional shapes; TigHl explored the bending of ) ) . ) . .
a homogeneous, orthotropic beam: ivdle [5] considered a re- For extenS|on.-bend|ng-.torS|on of a unlform cantilevered cylin-
stricted class of inhomogeneous, monotropic beams; and Kﬁf of lengthL with an arbitrary cross section of perfectly bonded

matka and Dong6] considered the extension-bending-torsion ani[\€a!ly elastic materials as shown in Fig. 1 of DK1], the finite
element nodal displacement field has the form

Saint-Venant's problem is concerned with equilibrium of al
elastic cylinder subjected to traction on its cross sections at t
two ends, and Saint-Venant's solutions refer to those based o
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MECHANICS. Manuscript received by the ASME Applied Mechanics Division,whereU(z) is an ordered 81 array of the nodal displacements of
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of Mechanical Engineering, University of Houston, Houston, TX 77204-4792, an Rp are ANX6 matrices representlng the prlmal fleld' Cross
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ASME JOURNAL OF APPLIED MECHANICS. and g, and agg are 6X1 arrays of amplitude coefficients. The
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Fig. 1 (a) Coordinate transformation—translation;

(b) coordinate transformation—rotation

stresses of this displacement field enables the construction of théor flexure, two transverse forcd3, andP,, act on the tip end
cross-sectional stiffness relatior;,,a,=F,, relating the end cross section but not necessarily through the shear center. The
force and moments to their corresponding deformational coeffiexural displacement field has the form

cients, that in expanded form is

Ki33 Kiza Kizs K36
a3 P,
Kiza Kias Kias Kiae| ) apy My @
Kizs  Kias Kiss  Kise a5 —My
K K K K &6 M,
136 146 156 166

U(xy,2)=[®(2) +z¥+ ¥, Ja, +[®(2) + ¥ ]b,
+ ®rp(2)agg (4)

where ®(z) and W, are the primal field and cross-sectional
warpages of extension-bending-torsiab, (z) and ¥, with &,

The diagonal coefficients,s3, x4, €tc., Of i, are the exten- andb,, contain the additional sets of the primal field and cross-
sional, bending, and torsional rigiditiesjss, k|35 are extension- sectional warpages for flexure and their associated displacement
bending coupling terms an 45 express mutual bending couplingamplitudes. Global equilibrium and end conditions give two rela-
about the(x,y)-axes;« 35 is the extension-torsional coupling; andtions for relating the end forces and moments to the displacement
(K146, K15¢) @re bending-torsional coupling terms. The inverse cmplitudes, i.e., rppap=F/, and Kppbip=Fip — Kibbis

Eq. (2) gives the cross-sectionabmplianceor flexibility relation

SwbFib=2a, or in expanded form as

s s s s
133 Siza Sias  Sizs P, as
Siza Siaa Sias  Siae My () & 3)
Sias Sias Siss Siss| | —My as
M a
Si3s Sia6 Sise  Sies z 16

Journal of Applied Mechanics

which, in expanded form, are

K133 Ki3a Kizs K36 a3 0
Kiza Kiaa Kias  Kisg s Py (5)
Kizs K45 Kiss  Kisg s Px
K K K K e 0
136 146 156 166
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K33

K34

K35

K36

’

Table 1 Relations of «j; and S}j in terms of k; and S; for

. ij
bis 0 translation
Ki3a Kjaa Kias Kias| | byjg 0
' ’ 2 2
K|33= K S;33=Si33T S + Sy55 X
Kizs Kias Kiss Kisg| | Pis 0 133~ K133 133~ Si3at S14a Y1 T Siss X¢
bie P.e.+P.e , +2(Si3aYi+ Sizs X+ Sias XeY)
’ ’
Kize Kias Kise Kies e K|44= K24 K133Y; — 2K134 Yt Si44= Sia4
’ . ’ —
0 p « p KI'557KI55+KI33XI72KI35Xt s|,55*5|55
1134 1135 1136 a3 Kle6= K166 Si66= Sie6
[ [ A—
— K34 0 Kiss  Kiuas| | ayg Kiaa= Kiza™ K133 Yt 3|,34:S|34+S|44Y1+5|45X1
- a (6) Kizs= Kizs— KizaXe Si35= Si35 Sia5 Yt t Siss Xt
T Kz T Kigs 0 Kiise6 115 K|36= K136 Si36= Si36T Sia6 Yi T Sis6 Xt
r ’
—Kuss —Kias —Kuss O Qe Ki45= K145 K133 XYt Si45= Sias
~ K134 Xt K135 Yt
wheree, ande, are thex andy distances to the shear center«/,= x5 K36V S{46= Sia6
Coefficients 6”1,3”2) and (b||1,b||2) in ay andb” have no role KI,56= K56~ K36 Xt SI’56: Si56

in flexure and may be ignored.

Coordinate Transformations

To determine the various cross-sectional properties, two coet

dinate transformations are needed, viz., a translationy()

within the x-y plane and a counterclockwise rotatianabout an &= x|+ Kss5°+ 245 SC
axis normal to it as shown in Figs(a and Xb). These two «|ss= k(s5sC>+ k[4s8°+ 245 SC

wherex; andy, are the translation from the old to new axes.

"

Table 2 Relations of «j; and Sj in terms of &
rotation

’

’
ij and Sj for

U _ U — ’r

Ki33= K|33 5|/33*3|,33 a0 )
$44=s,44c2+s,5552—25|45sc
ot ’ ’
955 S55C° + (44 S°+ 25/45SC

transformations will be taken in sequence, translation first antse= ¥i6s Sis6= Siss

then rotation. The unprimed quantities are referenced to the origfiss= /3.~ ki35S
nal coordinate system, those with one prime are for the translatges™ <issC i3S

R ’

§34= S{34C— S{35S
4 . ’ r

35— S{asC+ S{34S

axes, and those with the double primes are for the rotated axgs— <13 o, Se=Sizs
For translation, the relation betweéqy) and (x’,y’) of a generic <145~ Kias(C” %) + (kiag™ Kis9)SC Fas=Siae(C”— %) + (Sjag~ Sigg)SC
point in the old and new systems is given by the equations

X=X"+X¢; Y=Y +V;.

()

— ! ! ) !
Kia6™ K146C~ K|56S §46= SiaeC— Si56S
"

j— ! ’ 4 — ’ ’
Kis6= Ki56C T K|46S 56— SiseC+ Sia6S

wheres=sin « andc= cos«; a=angle measured counterclockwise from old to new

For a counterclockwise rotation of angigthe transformation has ayes. Unprimed quantities indicate invariance to both translation and rotation.

the form

X"=x"cosa+y’sina; y'=-x'sina+y’ cosa.

©)

Referring to Fig. 1a), the formulas for transformations of dis'Modqus and Compliance-Weighted Centroids and

placements and their corresponding force and moment result

by translation between the two systems are

ap=T18, «— Ap=Toa,

Flo=T3Fib < Fis=TiF,,

©)

(10)

aIehq’ncipal Bending Axes

The stiffness and compliance relatiof® and(3) depend on a
coordinate system with origin located at some point on the tip end
cross-sectional plane. There are aopriori provisions in the
Saint-Venant problem for choosing an origin. Therefore, the stiff-

where matricesT; and T, are given in the Appendix. Applying ness and compliance matrices in general will be densely populated
translation to Eqs(2) and(3) gives the new cross-sectional stiff-evincing full coupling of extensional, bending, and torsional be-
ness and compliance matrices in terms of those of the old systbaviors. Certain terms, nevertheless, can be annihilated by suit-

as

where the components &f,,, andsy,,, are given in Table 1.

r 7T
Kipp= T 2Kibp T2

Stbp=T1SbbT1

(11)
(12)

able choices of the origin and orientation of the coordinate axes.
Herein, transformations are presented to rid the stiffness and com-
pliance relations of coupling between extension and bending and
between the bending effects about the two orthogonal axes. This
location and orientation express tleentroid and theprincipal

bendingaxes of the cross section. For a general anisotropic inho-

Referring to Fig. 1b), rotation of displacements and their cormogeneous cylinder, two distinct centroidgl) a modulus-
responding forces and moments by a counterclockwise amgleveighted centroidand (2) a compliance-weighted centroidas
about thez-axis takes the forms

where the components

transformation.

ap=Taay, < ajp="T,a)

n _ 1T/ 1 1T
ib=TaFip <= Fip=TsFp

Sho=TaSbpT3
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13)
(14)
whereT; andT, are given in the Appendix. Applying rotation to
Egs.(11) and(12) gives

Koo =TaKlppT 4 (15)

(16)

p @ands,, are given in Table 2.
Transformationg9) (10) and (13) (14) form a contragradient

pair. Tables 1 and 2 show thafss, |36, k66 FEMain invariant in

both coordinate transformations, but omslyg is invariant in both

well as two sets of principal bending axes are possible.

Translation ofk;,, to the modulus-weighted centroicequires
that «/5,= x/35=0. Setting these terms equal to zero from their
expressions in Table 1 gives

K|35 K|34
Xp=—— Yo&w—— (17)
K33 K|33
so that

K33 Kiz4 Kizs K36 Ki33 0 0 «ize
’ ’ ’
Kiaa  Kiss  Kise Kiaa Kigs  Kige
- ! !
Kiss  Kisg Kiss Kise
sym K66 sym K66

(18)
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where the otherx|;; coefficients are given in Table 1. Thewill not occur, and there is no distinction between the two cen-

unprimed quantities on the right-hand side of Etp) denote an troids. The extension-torsion coupling coefficient is present only

invariance with respect to translation, i.e., the temyg, x35, fOr aninhomogeneous cross sectithat also lacksnaterial sym-

and kg6 - metrywith respect to a generic cross-sectional plane. For the most
Rotation of the coordinate axes to the principal bending axgéneral form of anisotropy possessing symmetry about a cross

eliminates mutual coupling of bending effects about both orthoggection plane, the elastic modd@i matrix contains the following

nal axes, so thak|,; must vanish. Setting|,=0 from Table 2 terms:

gives [Cu Ciz Ciz - = Cy
tan 2= & (19) : C22 C23 : : C26
Kis5™ Kiaa . . Cys - - Cap
so that C=l ) . Cu Cus - (25)
kg3 O 0 Kz kg3 O 0 ks . . . - Css
Klas Kias Kiss Kiaa 0 K L sym Ceés|
—
Kiss  Kise Kiss  Kise which is that for a monotropic material. Thus, the appearance of
sym K166 sym K166 any of the coefficients beyond those shown in E2p) in one of

the materials in an inhomogeneous cross section precipiaiges
(20) 5

i.e., the presence of any one of the coefficients
where thex{; coefficients are given in Table 2. The unprimed©14,C15,C24,C25,Cs4,Cs5,Cys6,Cs6. Note that for an inhomoge-
guantities on the right-hand side of E@O) indicates an invari- Neous, anisotropic cross section witfss present, the inverse of
ance with respect to both translation and rotation. Consider tie canonical form of the stiffness matrix will result, in general, in
form of the stiffness matrix given by the right-handed side of E@ densely populated compliance matrix, i.e.,
(20) as thecanonical form where all extensional and flexural

coupling are absent. kizz3 0 0 xizg] ' [Sizs Siza Sizs Size
Translation ofs,;, to the compliance-weighted centroigelds Kiaa 0 Kug Sjas  Sias  Sise
S|34=S/35=0, which from Table 1 gives the following equations = s s
and solution: Kiss5  Kisg 155 9156
sym K66 sym Sie6
Siaa  Siss [yt} :[SIM} 26)
Siss  Siss) (Xt Si3s
so that the presence sf;, ands, z5 enables the possibility of two
{Xt] ot { Si345145™ 3'445'35} (21) centroids.
Yt s|44s|55—s,245 S1355145~ Si555134, The bending-torsion coupling coefficients,,s and «,55, can

occur in both homogeneous and inhomogeneous cross-sections

so that lacking material symmetrywith any cross-sectional plane, i.e.,
Si33 Siaa S35 Sizs Sl33 O 0 S5 \(/gg; the presence of any coefficient beyond those shown in Eq.
Siaa  Sias Sise Siaa  Sias  Sise
—
Sis5  Sise Sis5  Sise
sym Sig6 sym Sie6 Line of Extension-Bending Centers
(22)

Flexibility relation (3) at the compliance-weighted centroid has
where the formulas fos|;; and sz are given in Table 1. the form
A counterclockwise a-rotation of the z'-axis through

’ ’
compliance-weighted centroid to principal bending axes yields Sz 0 0 Sig P, a3
s/45= 0. By the formula fors/,s from Table 2,« is given by Siss Sias  Sias My | ) & 27)
o 2Si45 23 Siss  Sise _MMy a5 |
tan 2= ———— a
Si55~ Si44 3) sym Siee ‘ 10
so that This relation shows that an axial for€, by itself with resultant
, , , 0 0 , passing through the compliance-weighted centroid causes exten-
Sz 0 0 sig Sias Sizs sional, bending, and twisting deformations. By shiftiRg to a
Siza Sias  Sie Sy 0 Sl poinf[ with coordinatesxeb,yeb), twisting can be suppressed leav-
— ” Y ing it to produce extensional and bending deformations only.
Siss  Sise Siss  Sise There exist an infinity of such points, however, lying on a straight
sym Si66 sym Si6 line that can be called théne of extension-bending centeihis

¢ (24) line is defined by setting,=0 in the fourth line of Eq(27) and

. ) ) . letting P,=1, so thatM,= —y¢, andM = — Xy, to give
wheresyj;'s are given in Table 2. Analogous to the canonical form
of the stiffness matrix, the right-hand side of Eg4) is the ca- , Siss, Siz
nonical form of the compliance matrix. Yeb™ 2 P

The coefficient enabling two distinct centroids is the tekmg
or s;36. In canonical forms, the presence of either of these codfor a homogeneous cross section, the line of extension-bending
ficients is dependent upon the following characteristics of theenters passes through the centroidsgg=0, see Kosmatka and
cross section. For all homogeneous cross sections, regardles®oifig [6]. Otherwise, this line is offset from the compliance-
the extent of the anisotropy in the material propertiggs or S;35  weighted centroid whes, ¢ occurs.

e (28)
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6

Shear Center 1
a2t byet EZS i (i x(X,Y)

The shear center is that point in the cross-sectional plane
through which the application of a transverse force causes no

e,(x,y,2)=—GJ

twist. It is generally regarded as a property of the cross section

and is independent of the fixity conditions at the end of the cyl- = Piuy(X¥)) |- (36)
inder; see Timoshenko and Good|é2] for a discussion of this

point. This equation shows, to the shear center agpaintwisefunction

For shear center calculations, use the modulus-weighted cgf4|| three coordinateéx,y,z). One possible way to proceed is to

troid in the tip cross-sectional plane as the origin. The shear cendgfine azero-mean rotation shear centey, ¢ obtained by aver-
location requires definition of thetation rateor theunit angle of aginge, over the cross-sectidn.
def1 9 [agv  du

twist 6 as
1ff (x,y,2)dxdy=—GJ
~1d|dv du &= ey(x,y,z)dxdy= —
oxy)=5—|— 3y (29) A

Partial differentiationsgv/dx anddu/dy of Eq. (18a) of DKL
[1] according to definitior{29), give the rotation rat@ for torque
M, as

6
ezt bus"“z3 ayi
“

37

whereA is the cross-sectional area af)j is given by

1
Qi:ﬁf f(wliu,x(xxy)_lr//Iiu,y(X:Y))dXdy (i:3 to 6)'
A
(38)

The line of shear centers is parallel to thaxis if a; ¢ is absent
from Eq. (37), i.e., for a cross-sectional plane also as a material
symmetry plane. For cylinders without such material symmetry,
K3 K46 Ksg the line of shear centers varies linearly along thaxis®
a|3=—K—3aa|e; a|4=—K—443|e; a|5=—K—553|6 (31) The classical definition of the shear center due to Griffith-
Taylor [11] does not consider warpage. Disregarding warpage in
Then, by the fourth equation of stiffness relati@j, the following Eq. (36) gives this shear center as
torque-twist relation is obtained:

0(x,y)=a,g a constant. (30)

Under torqueM, by itself, the rotation rat@ is constant, and, 3,
a,4, anda,s can be expressed directly in termsayf from stiff-
ness matrix20).

&y = —GJ[ay6z+by 6] 39)

o M,=GJ6 (32) Reissner’s shear center definitifh,15 rests on the condition
whereGJ is the composite torsional rigidityof the cross section that it coincides with the center of twist at the root end. But, the
given by center of twist(discussed in the next sectjomlepends upon

2 2 2 boundary conditions. Hence, Reissner’s definition would also de-
Ca= ke 36 K45 K56 (33) Pend on boundary conditions, so that it will not be a property
66 . . .

K33 Kas Kss solely of the cross section. But the boundary conditions at the root
end involves a particular value of the rigid-body displacement
only. Since any two Saint-Venant displacement fields can only
differ by a rigid-body displacement, Reissner’s line of shear cen-

The rotation rate for flexure by applying Eq(29) to Eq.(29)
of DKL [1] has the form

18 ters will be shifted but remain parallel to that of E§7), a result
00%,Y)=aysZ+bust = 2 ani (Yrip x(X.Y) = tiiu v(X.¥)). shown by Kosmatk&16,17].
Y e et 2 123 1 (i 00D = iy Y Since coefficientd,;;’s in Eq. (6) depend on the choice of the

(34) origin, a consistency check &, in Eq. (39) of DKL [1] may be

Here, = 6(x,y) due to cross-sectional warpage, in stark contragfimed out by taking

to that of M,. Note that even though a transverse shear force is Fu=[P1=1, P,=0, 0, 0, 0,¢,] (40)
involved in the shear center, only the warpages of the extension- '

bending-torsion problem participate in ER4) as none of the Whereeyi is they-distance to the shear center by either one of the
warpagesy,;’s from the flexure problem enter into the rotationtwo definitions,e, =e, , ore,__, ore, . This calculation will

rate. yield different values for coefficients) 5 to a; ¢ andbyg, but it

After these explanatory comments,_a general_ definition of th®,ould give the same physical location of the shear center.
shear center can now be stated. It is that point in any cross-

sectional plane through which the application of a transverse force .

produces na. Consider a unit forcd®, =1 passing through the Center of Twist

shear center that is at a distargegrom the centroid. A transverse  The center of twist is that point at rest in every cross section of

force P, at a distance, from the centroid can be similarly treatedthe cylinder subjected to a torque at the tip end and restrained
in a separate calculation. Translation of this unit force from thigom translation and rotation at the root end. It is dependent upon
shear center to the centroid causes an accompanying torsiah@l root end boundary conditions; see Timoshenko and Goodier
momentM,=e, . Superposition of rotation rates from pure tor{12] for a discussion of this point. Therefore, it is necessary to

sion with M,=e, and flexure withP,=1 passing through the discuss these conditions first. For a cantilevered cylinder of length
modulus-weighted centroid yields the following equation: L under a unit torque, the rotation raés constant over its entire

6|t°rs'°n+ 0|ﬂexure 0. (35) 2Novozhilov[13] employed the same averaging procedure in his discussion of the
Inserting Eqs(32) and Eq.(34) into Eq. (35) and solving forey shear center of a homogeneous, isotropic cylinder. He further showed that the loca-
give tion of the shear center depended upon the torsion problem only, and that the flexure
problem need not be involved.

- SLibove[18], in his investigation of twist rates in thin-walled members, offered a

Lekhnitskii [7], (p. 180 calls this quantity thejeneralized torsional rigidityln  definition of a mean value shear center over the length of the beam by integrating an
his case, the generalized torsional rigidity accounts for the torsion/bending couplieguation similar to Eq(37) over the length, which essentially gives the shear center
but not the torsion/axial force coupling inasmuch as he only considered a homodgeation at midlengthz=L/2. In his discussion of this point, he immediately ques-
neous anisotropic cylinder wheregg=0. tions the utility of such a definition.
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length and equal to @J. Displacement field183 of DKL [1] _ 1
with a,;’s given by Eqs(30) and (31) takes the form u(2)=% u(x,y,z)dxdy=0;

1
U(Z)EKJ’ fu(x,y,z)dxdy=0

1 Kise Z°  Kiss K146 (43)
UX,Y,2)= —| =yZ+ — —— —— thi3u(X,yY) = — thau(Xy)
J Kiss 2 Ki33 Kag 1 _ 1 B
5 x(2)—uy(2)=751 {v x(x,y,2) = u y(x,y,2)}dxdy=0
K56
- 7551//|5u(ny)+ i6u(X,Y) |~ @3y~ 022+ Uo Substituting displacement field1) to Eq. (43) gives the follow-
ing equations in terms of components, (v, ,w1,w,,w3,)
y L= oF 1 TL+ Kisg L2 K|36U KI46U
1 Kiag 2> K K o Wb T wWgy= T | PR
D(X,Y,2)= == | X2+ — == = Yy, (X,Y)~ — 4, (X.Y) GJ Miss 2 Kiza T Kiag
GJ Kiaa 2 Kia3 Kiaa
K56
Kis6 - K—U5+U6 (44)
- K_¢|50(le)+¢|ﬁv(xly) twgX—wiZ+v, 195
155
(41) _ 1] kawsl® Kz K|46
Vo~ wL+twyx=——|xL+ — — —V3— —V,
GJ Kiss 2 Ki33 K44
Kise
1 K36 K56 K46 K36 B K_V5+V6 (45)
W(X,y,2)= —| =~ ——2Z= ——XZ~ —YZ~ — 134(X,y) 155
GJ K33 K|55 K44 K33 .
K36 K46 K|56
K46 K56 w3=— —| = — Q3= — Q= — 05+ Q4 (46)
— —— han(XY) = — hisw(X,Y) + hew(X,Y) GJL Kss Kiaa K55
K44 K55
F gyt oX+W wherex andy are the coordinates of the geometric centroid and
1 2 o

1
Ui:z\f f iu(x,y)dxdy
where constantsl,, vy, Wy, w1, w,, and ws are rigid-body 1
translations and rotations. Vi:—f f i (X, y)dxdy
In principle, the six rigid-body displacement components allow A
sufficient mathematical freedom to satisfy any arbitrary condition , . . . .
but at one point only for each of the translations and rmation%cr)]r?gif?ovr;a?n?r:\ilrsl?ziFr)\re\:Loeu?zeb);a?chs). ﬁ:ﬂétgfnﬁiee%ft:ggz-
Lekhnitskii [7] used the following conditions in his pure bendingmen,[W <v L) at the ?oot end v%here q P
example, which atX,,y,,L) of the root end, are xy.L)

(i=3 to 6) (47)

JEJ' J’wz(x,y,L)dxdy (48)

U(Xo.Yo L) =0 (X0 Yo, L) =W(Xo,¥o,L)=0 with respect tav, , w5, andw,, i.e.,dJ/dw,=0, 3J/ dw,=0, and

0”\]/&(,01:0,

IU(Xg,+Yo,L) _ v (Xe,Yo,L) _ av(xo-yo-l-)i U(Xo,Yo,L) f f w(x,y,L)dxdy=0;
Jz 0z X ay

=0. (42) ff XwW(X,y,L)dxdy=0; ijw(x,y,L)dxdyzO.

(49)

He has also used the conditiongs=0 andw,=0 for other ex- These minimizations supplant the conditions of the vanishing of
amples elsewhere in his text. Restraint conditiot® will not be  the axial displacement and slopesgw/dx and aw/dy, over the
used since1) fixing a point from both translation and rotation isroot end cross section. Weinst¢itf] used this procedure, and he
not physically realizable, an(®) conditionsdu(x,,y,,L)/dz=0 based it on an idea of Cica[@0] and Trefftz[21]. Substituting
anddv (X, .Y, .L)/9z=0 do not strictly express full rotational re- the third equation of41) into Eq. (49) gives the following three
straint. Note also that applying E@¢42) to another point only equations, which together with Edg4)—(46) enable the solution
change the rigid-body components in E41), with the net effect Of the rigid-body displacement

being merely another rigid-body displacement. In a prototype

physical case, many points may be partially and/or completely 1

[ K36 K46
restrained. One way to rationally represent this condition is to WotY®1+Xw,=——| = ——(L+Wsz)— —L(yL+W,)
insist on the vanishing of the mean cross-sectional translations, GJL  #s3 Kiaa
andv, and rotation about the cylinder’s generatar,, (- u ,)/2 at P
the root endz=L, where the mean values are defined as their — — L(XL +Ws) + W (50)
cross-sectional averages. K|55
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Ik Iy 1 Kigs g (ot Yot)
YWt — w1+ — wy=— —| — — (XL +Wszy)
A A GJ K33 center
of
K | % twist
_'_56(£|_+W5X
Kiss\ A
K46 Ixy
——(—L+W4X +W6x} (51)
K44
| | 1 K
XWot — g+~ = — — | — —= (YL + W) (X %) 4
A GJl Kiz3
K|56 |xy
- — —L+W5y
Kiss\ A v
K46 Iyy
K|44( A / g Y

i-th node
wherel,,, |y, andl,, are planar moments and product of inertia
with respect to the modulus-weighted centroidal axes and

(Wi, Wi, Wiy)

Fig. 2 Center of twist location

1
= K f f (l!f“W(X,y),Xl!/“W(X,y),yl/f“W(X,y))dXdy

(i=3 to 6). (53) "
Returning to the center of twist location, its definition should be 2_ RO(L—2)—A.12 59
based on torsional deformations only. Hence, the extensional and € .21 [Ri6( ) I (59)

bending terms in Eq41) should be discarded. S ) ) )
Minimizing €? with respect tox,, andy,, gives the following two

1 nonlinear algebraic equations
u(x,y,z)= a [—YZ+ i6u(X,Y) ] = w3y — wpZ+ U,

a % Aixi_ a % Ajyi

NL-2D & R YN & R Y

Xet=

1
v(X,y,2)= a[XZJr oK, Y) ]+ wX—w1Ztv,  (B4) o e nonlinearity emanates froq andy,, in R;. An itera-

tive solution can be obtained bggula falsj i.e., by assuming;
1 and y.; on the right-hand sides of E¢60) and checking their
W(X,Y,2)==— Jeu(X,Y) | + @1y + wX+ W, values by performing the indicated summations.
GJ The warpage is the source of difficulty in defining the center of
. . - ist in an inhomogeneous, anisotropic cross section. When this
or in terms of the nodal displacements of the finite element modglim is not within the cross section, one cannotisahdv equal
as to zero and solve fokg; andy,; inasmuch asyg,(Xct,Yet) and
1 Deu(Xet,Yer) are not defined. One way to remove tlisy) de-
U(2) = — [ 2+ ] + Pre(2) Bns (55) pendency is to adopt some average values, for examplelJgise
GJ and Vg of Eq. (47).

where ¢, s anddgg(z) are given by Eq(15) of DKL [1]. 1

Referring to Fig. 2 and according to E&5), the total displace- u(x,y,z)= —[—yz+Ug]— w3y — w2+ U,
mentA; of ith node in the finite element model and its orientation GJ 61)
angle »; with respect to the-axis arc

1
Ai(2)=\uX(2)+vi(2); m(2)=tan [u(2)/vi(2)]. (56) v<xvy,2>=a[XHVestX*levo

Since 6 is the unit angle of twist, the total twist at statianis

9(L—z), so that théth node rotated about the center of twist by>€ttingu=0 andv =0 and solving forx andy give the following
the amount center of twist coordinates which may also act as initial estimates

in the iterative solution of Eq59).

. ) ) GJ(UO_U)]_Z)""VG GJ(UO—w12)+U6
whereR; is the distance between poirnt;(y;) and the center of Xep=——————— Ya=—— (62)
twist of coordinatesXs;,Yer) . z+Glwg z+Glwg
RZ= (X = Xe0) 2+ (Vi — Vo) 2 (58) Examples
Different nodes vyield different values of,; andy.. A least- Two laminated anisotropic cross sections are considered, viz.,

squares solution fox,; andy, is possible. Define the err@; of (1) an angle with legs of 1.0 and 1.5 units af® an uneven
theith node asR, #(L —2z) — A, , whose sum of its squareg over channel with sides of 1.0, 1.5 and 0.75 units as shown in Figs. 3
the N nodes of the finite element is and 4, respectively. Both are fabricated from a two-ply sheet of
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+30 deg angle-ply with 0.1 unit total thickness and 0.05-unit-ply sheet thickness. The material properties are typical of a graphite-

epoxy composite, i.e.,

%:10; GE—LTTZOA; GE—TTT:O.?:; v 1=0.3; v1=0.25 (63)
and theC;; properties, in thet30 deg orientations with respect to the coordinate axes, have the values
[ 1.7033 0.3148 2.0804 +1.0194
0.3148 1.0831 0.3781 +0.0549
2.0804 0.3781 6.2848 +2.9483
C=Er 0.3750 70.0433° (64)
+1.0194 *+0.0549 =*2.9483 2.0705
L +0.0433 0.3250 |
[
These two cross sections are formed by folding two-lay&0 1014.44 624.75 253.92 —28.2
deg composite sheets into angle and channel shapes as shown in
Figs. 3 and 4. Therefore, the above properties must be trans- _Er 624.75 686.17 101.33-2241
formed accordingly to accommodate the fixed Cartesian coordi- Kibb=7 3 253.92 103.33 13755 —7.75
nate system. ~28.25 —2241 -7.75 152

With the initial origin of the coordinate systems taken at the
lower left corner of the cross section in both cases, their cross-
sectional stiffness matricagy,

channel

Translation to the centroids and rotations to principal bending

axes lead to the following stiffness and flexibility matrices:

871.14 421.98 202.58-19.1
Er| 421.98 399.34 29.07 —-9.12
=— 65 I
KiebTI®| 202.58  29.07 116.37 —4.30 (65) Kibb
—19.17 —-9.12 —-4.30 1.20
angle
y v
i
1.016
| X"
N
23.85°
Pt
modulus-weighted
centroid
shear
) center
. shear center
/- 0.484
g‘\ ~
i A |
<+ 0.233 *j=— 0.767 l

Fig. 3 Two-layer *30 deg angle-ply angle cross section

Journal of Applied Mechanics

871.14 —-19.1
E; 225.47 0.08
10° 38.73 021
—19.17 0.08 0.21 1.20
angle
0.750 {
y" y'
(Y- .
A |
|
(¥ — 12.9°
0.884
. modulus-weighted
« centroid ,
/X
? + X"
/; A compliance-weighted
d _i" centroid
P 0.616
¢
/|
N
s ' 4
-~—0.250 ~» 0.750 !

Fig. 4 Two-layer *30 deg angle-ply channel cross section

(67)
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Table 3 Summary of section properties

390 / Vol. 68, MAY 2001

lutions were presented. It was shown that for an inhomogeneous,
anisotropic cylinder lacking a cross-sectional material symme
plane, there are distinctions between the modulus-weighted

compliance-weighted centroids and their principal bending axesll Dong, S. B., Kosmatka, J. B., and Lin, H. C., 2001, “On Saint-Venant's
The line of extension-bending centers was defined, which is based Problem for an Inhomogeneous, Anisotropic Cylinder—Part |: Methodology
on the flexibility relation. Both Griffith-Taylor and zero-mean ro-

tation definitions of the shear center were given, with the Griffith-

Cross Section— Angle Channel
Centroids Xt y 6, Xt Vi [
Modulus-weighted 0.233 0.484 23.85 deg 0.250 0.616 12.92 deg
Compliance-weighted 0.237 0.489 23.86 deg 0.224 0.425 15.83 deg
Composite
Torsional 0.781x10°® 0.607< 103
Rigidity GJ/E¢
Line of y’'=1.906' —8.657 y'=1.17% +1.094
Extension-Bending
Centers
Shear Centers
Griffith-Taylor e,=—0.18910.012% e=—0.4169-0.00242
e,= —0.4069-0.0105% g,=—0.2740+0.0124&
Mean-valued e,=—0.1855+0.0012% e=—0.4232-0.00242
e,= —0.4064-0.0105% g,=—0.2776+0.0124&
1.77 28.13 Taylor definition ignoring warpages, while the zero-mean rotation
shear center relied on integrals of the warpages over the cross
< N 4.44 —047 (68) section. Likewise, a center of twist was set forth, a cross-sectional
bbEL 2586 —6.98 property that is dependent upon the boundary conditions on the
root end. These conditions were enforced on the basis of a number
28.13 —0.47 -6.98 1280.7 angle of mean-valued displacements found by integration of their point-
1014.44 _ 282 wise values over the cross section, as seen in 8. (43), and
' ' (49), and in the formula fod given by Eq.(48). While the defi-
, = 314.03 —4.73 nitions herein for both of these properties were rationally justified,
Kioo= 73 6137 —1.78 othfer averaging procedu_res are possible so that issues regarding
their best definitiongemain open.
—28.25 —4.73 -1.78 152
channel i
Appendix
2.05 38.14 The transformation matrices,, T,, T3, andT, for translation
and rotation of coordinate axes are listed here.
1 3.52 22.34
b= 70 1 x; O 1 - —x; 0
Soo=E; 1772 49.07 (70) o Yo Tx
0 1 0 O 0o 1 0O o0
38.14 2234 49.07 1647.23 T,= D T,= (A1)
] ) ) ) 0 1 o 0 O 1 0
The modulus and compliance-weighted centroids, composite
torsional rigidity, lines of extension-bending centers, and shear 0 0 1 0 0 0 1
center locations according to Griffith-Taylor and mean-valued r1 0 0 01
definitions for both cross sections are tabulated in Table 3 and a ]
number of these properties are shown in Figs. 3 and 4. The two _ 0 cosa —sina 0|
centroidal values and principal bending axes for the angle are in Ts= 0 sinae cosa O]
close proximity and orientation with each other, but there are
significant differences in these quantitities for the channel as seen Y 0 0 1]
in Fig. 4. The composite torsional rigiditJ is based on Eq. 1 0 0 o
(33), and that for the angle is approximately 65 percent okjtg _
value. However, for the channel, there is an even greater reduction 0 cosa sina O
to 40 percent of its«|gg value. For both of these cross sections, T4= 0 —sine cose Ol (A2)
there is only a small difference in the shear center locations be-
tween the Griffith-Taylor and zero mean rotation values. L0 0 0 1]
. These transformation matrices satisfy the equations
Concluding Remarks Tt fyT : .
Methods for determining cross-sectional properties for an inho- TiTo=ToTy=ToTh=TiT,=1 (A3)
mogeneous, anisotropic cross section based on Saint-Venant's so- ToTa=T,To=TiTo=TiTi=1. (Ad)

t
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H. C. Lin
S. B. Dong

On Saint-Venant’s Problem for an
Inhomogeneous, Anisotropic
Cvlinder—Part Ill: End Effects

Mem. ASME

End effects or displacements and stresses of a self-equilibrated state in an inhomoge-
neous, anisotropic cylinder are represented by eigendata extracted from an algebraic
eigensystem. Such states are typical of traction and/or displacement boundary conditions
that do not abide by the distributions according to Saint-Venant's solutions, whose con-
struction were discussed in the first paper of this series of three. This type of analysis of
end effects quantitifies Saint-Venant’s principle, and the algebraic eigensystem providing
the eigendata is based on homogeneous displacement equations of equilibrium with an
exponential decaying displacement form. The real parts of the eigenvalues convey infor-
mation on the inverse decay lengths and their corresponding eigenvectors are displace-
ment distributions of self-equilibrated states. Stress eigenvetors can be formed by appro-
priate differentiation of the displacement eigenvectors. The eigensystem and its adjoint
system provide complete sets of right and left-handed eigenvectors that are interrelated by
two bi-orthogonality relations. Displacement and stress end effects can be represented by
means of an expansion theorem based on these bi-orthogonality relations or by a least-
squares solution. Two examples, a beam with a homogeneous, isotropic cross section and
the other of a two layer beam with 230 deg angle-ply composite cross section, are
given to illustrate the representation of various end effedt®OI: 10.1115/1.1363597
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was put on firm footing by Toupifi7] and Knowled 8] with their
In Dong, Kosmatka, and LifiL], the first paper in this series of strain energy inequality theorems. These theorems bounded the

three and hereinafter called DKIL], Saint-Venant solutions were {t€nuation rates to no greater than exponential decay. For an

constructed for a prismatic cylinder with an inhomogeneous, af¥ceptionally comprehensive summary of the developments in

isotropic cross section. This construction was made on the basis¥fnt-Venant's principle, the reader is referred to Horgan and

the relaxed formulation of Saint-Venant's problem where the erfghowles[9] and Horgar{10].

conditions are prescribed in terms of integral resultants of axial A considerable body of literature on finite element calculations

force, bending moments, torque, and flexure force. of decay rates and their corresponding eigenvectors is available,
Saint-Venant solutions are rigorously valid everywhere excepiz., Rao and Valsarajarl1] on sandwich strip, Dong and Goet-

in the neighborhoods of the two ends of a cylinder. Saint-Venasthel[12] on laminated, anisotropic strip, Giavotto et 3] on

[2,3] conjectured that his solutions differed with all other soluthree-dimensional anisotropic cylinder, Huang and Dt on

tions possessing equipollent forces and moments only in theaginated, anisotropic circular cylinder, Okumura et[d55] on

neighborhoods, i.e., in what has since been called Saint-Venangginated strip, Goetschel and Hili6] on general cross-section,

Principle. For any solution with an end force or moment equal t9hq Kazic and Dond17] on restrained torsion. Of these, only

that of a Saint-Venant solution, the difference between them iS@ic and Dond 17] considered the solution a three-dimensional

self-equilibrated state whose effects are confined to near the e ion of a particular end restraint condition by means of an
of the ’cyllnder, Le., end effects. Our understanding of Saln%‘lgenvector expansion of the end effects with the established
Venant's celebrated principle has been predominantly on a qua

1= . . . .
tative rather than a quantitative basis. eigenvectors. Besides these numerical studies, mention should be
The first quantitative analyses of end effects were given

ade of analytical representations of end effects based on analyti-
Johnson and Littl¢4] and Little and Child§5] on homogeneous,

Introduction

al solutions of boundary value problems; see, for example, Gre-
isotropic plane-strain strips and circular cylinders, respectivel§ory and Gladwell[18] on the clamped isotropic strip, Horgan
From their boundary value problems, characteristic equatiohk?] on composites, and Savoia and Tully@0] and Vel and
were formed whose eigenvalues and eigenfunctions represer&ira[21] on orthotropic strips. More information on such previ-
inverse decay lengths and associated distributions of sedus work can be found in Horgan's review state-of-theddr@]).
equilibrated states. Moreover, these eigenfunctions are complel@rein, Kazic and Dong’s approa¢h?] is followed for append-
and may be used in an eigenfunction expansion for representing end solutions to Saint-Venant solutions in order to satisfy any
any self-equilibrated state. It is of interest to note that Syije prescribed pointwise tractions at the tip end and restraint condi-
gave the essence of the complete analysis by posing the eiggsns at the root end.

problem and indicating the exponential form of the decay. But, he |n the next section, the exponential solution form is substituted
gave no solutions. The quantification of Saint-Venant’s principlgig the governing equation of the previous paper to give an alge-
braic eigenproblem. The solutions to this equation and its adjoint

Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF i terms of their right and left-handed eigenvectors are stated
MECHANICAL ENGINEERS for publication in the ASME OURNAL OF APPLIED :

MECHANICS. Manuscript received by the ASME Applied Mechanics Division, Oct.B"OrthOgona“ty properties 9” these two systems of elgenvectors_,
7, 1999; final revision, July 21, 2000. Associate Editor: J. W. Ju. Discussion on te¢e discussed. An expansion theorem that employs these bi-
paper should be addressed to the Editor, Professor Lewis T. Wheeler, Departme Fthogonality conditions is given. Then. the ana|yses of end ef-

Mechanical Engineering, University of Houston, Houston, TX 77204-4792, and wi t t both the ti d t d dd d. E |
be accepted until four months after final publication of the paper itself in the ASM Cts a O e up an I’OQ ends are addressed. £xamples are
offered to illustrate the solution method.
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The Algebraic Eigenproblem Solution of Eq.(8) consists of a transformation to left-handed

For determining eigendata to represent end effects, the foIIO\r/]v(-)rmal coordinatey

ing discrete system of second-order ordinary differential equations Q="wY. 9)

in terms of nodal displacemenl(z) is used. The eigenvalues of E@8) are the same as those of E§) with ¥

K,U,,+ KU ,—K3zU=0 (1) as the left modal matrix. The left modal matni may be parti-
This equation was given in DK[1] as Eq.(7). Recall thatk; and tioned into upper and lower parts.
K5 are symmetric andK, is antisymmetric. The solution to Eg. Vol [, v,
(1) for a self-equilibrated state has the form Q= v, |~ W, Y= w,r Y (10)
U(z)=Upe 2 The right and left-handed eigenvectors satisfy the bi-
whereU, is a vector describing the nodal displacement distribrthogonality relations
tion andy is the inverse decay Ie.ngth..SubstituEing E®). into WB®=diagB,): W AD=diag y,B,). (11)
Eq. (1) and suppressing the multiplicative facter ” lead to a ] ]
second-order algebraic eigenva|ue problem. In view of the upper and lower half forms given by E(qg) and
5 (10), bi-orthogonality relation$11) expressed entirely in terms of
(7 K1—=yKa=K3)Up=0 (3)  their upper half forms appear as
Elesequatlon may be reduced to first-order form by introducing ‘I’IKs‘I’ﬁ VmYn‘I’IKl‘I’UZ 8By
KsU;=yK3Ug. (4) (Ym™T '}’n)q'IKSq)u'i' '}’m')’n‘l'IKZq)uZ Smn¥YnBn - (12)
; ; . ; With these bi-orthogonality relations, a dual expansion theorem
I Eq.(4 Eq. h I I ; )
nserting Eq(4) into Eq. (3) and combining the resilts yield can be formulated. LeF be an arbitrary displacement vector,
0 Ksl|[u, Kz  0][u, which expressed in terms of the right-handed eigenvectors, takes
U, =Y U or AQ,=yBQ; (5) the form
K3 K2 1 0 Kl 1

whereQ; is the right-handed generalized coordinate state vector. F=®,a (13)
If M denotes the dimension bf, then 2V eigenvalues/s are  with « representing the amplitudes. These amplitudes are then
contained in algebraic eigensysté®). They can be real, complex given with the aid of Eq(12) as
conjugate pairs as well as have zero value. Nonzero roots repre-
sent attenuation rates of self-equilibrated effects into the interior a=diag 1/B,) (W K+ yaW K )F. (14)
of a cylinder with realy's expressing monotonic decay and com-
plex y's sinusoidal decay. The real roots occur in positive anfnalysis of End Effects

negative pairs, i.e.;ty;, and the complex conjugate roots are | et U(z) and o(z) denote the total displacement and stress
foursomes with positive and negative real parts, i£.yjr fields of a given problem that satisfy the pointwise prescribed
+iy; . Positive realy;'s and complex roots with positive real yractions and restraints at the two ends. In our discussion, it should
parts yjr's represent decay into the regia0, which in our pe ynderstood that(z) and any other stress vector to be intro-
coordinate systengsee[1], Fig. 1) applies to tip end conditions. gyced denote an array by concatenation of the six components at
The other subset of eigendata with negative reai’s and nega- each gaussian integration point taken over all such points of an
tive real parts—yjg's of complex y;'s are for root end condi- element and over all elements comprising the discretized model.

tions. The eigenvalue with the smallest magnitude real part i$e total displacement and stress field§z) and o(z), can be
important, as it defines the inverse decay length with the furthgsfitien as

penetration into the interior. Zero roots represent rigid-body trans-
lations and rotations and the extension, bending, and torsion fields ~ U(2)=Us\((2) + Uend 2); 0(2)=05(2) + 0end2)  (15)
of Saint-Venant's solutions. Certain computer algorithms requi
B of algebraic eigensyste(®) to be nonsingular, so that the rigid-
body modes irK; must be suppressed prior to the eigensoluti
process.

The solution to Eq(5) may be stated as a transformation to
right-handed system of normal coordina¥si.e.,

Qr=®X (6)

where® is the right modal matrix. In view of Eq4), ® may be
partitioned into upper and lower parts.

Ehere Us\((z) and os\(2) denote the displacement and stress
fields of the Saint-Venant solution having equipollent resultant
%brces and moments as thoseWfz) and o(z) and Ug,{z) and
o.ndz) are self-equilibrated displacement and stress fields of the
@nd effects. The Saint-Venant stress field is given by

ogy=C(bugy+b,usy,) (16)

whereugy is the element level form of the displacement vector
andb; andb, are strain-transformation matrices given by E).
of DKL [1]. From Eq.(15), the end effects are seen as the differ-

Ug| [Py D, ence between the Saint-Venant solution and that for the pointwise

Q':[Ul = QJX= @, % (7)  prescription of the end conditions. Moreover, these end effects

) ) . ) may be separated into two parts, one for decay from the tip end
wherel is a diagonal matrix of the eigenvalues. and the other for decay from the root end. Expressing these end

effects in terms of a modal expansion of their eigenvectors en-
ables Eq(15) to be recast as

Adjoint Eigenproblem, Bi-Orthogonality, and Eigenvec- @
tor Expansion U(2)=Us\(2) +[®:Eq[ ¥;2] ¢'2E2[')’j(|-_z)]][ az} (17

The adjoint problem to E(q5) in terms of left-handed general-

. . - where®,, ®, and o, contain the modal displacement and
ized coordinate®/, andV; is o2 NETI P

stress columns of the self-equilibrated stai@s,and a, are un-

0 Ks ][V, Ks 0]V, known amplitudes, an&,[ y;z] and E,[ y;(L—2)] are diagonal
=7 [ or ATQ=9BQ,. matrices containing the inverse decay length data, i.e.,
Ky —KyllV1 0 KylVa
(8) Ei[y;z]=diage "?%); Ej[ yjz]zdiac_Xe’WL*Z)). (19)
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According to Saint-Venant's principle, the end effects are rea- H y
sonably confined to the neighborhood at each end. First, consider }
the case of a sufficiently long cylinder where it is possible to fﬁﬁ
consider the effects on one end completely uncoupled from the
other end. Then, the two ends are treated as follows. . .

Displacement Boundary Conditions at Root Endz=L. %
Representation§l7) and (18) appropriate for the root end have o
the forms homogeneous, isotropic M:olr?];s;rs?:}o

U(2)=Us(2) + D,Eo (L~ 2) e - _ _
(20) Fig. 1 Cross sections of two beams

0(2)=05\(2) + 03B, ¥j(L = 2) ] .

Let U, be the nodal values of the prescribed nodal restraints at the
root end, i.e.lJ, =U(L). Settingz=L in Eq. (20) and noting that of the higher modes frord®; without affecting the solution accu-

E,=1I for z=L give racy of the dominant coefficients i, . However, the expression
of prescribed pointwise tractions at the Gaussian integration
U =Us(L)+®,a, or ®ra,=U —Ug(L). (21) points demands a significantly greater number of modes than that

to merely define the coefficients, . The least squares solution of
The solution for the amplitudea, can be obtained by means ofEd. (26) has the form

Eqg. (14).
&9 a1~ [S'S,]1S[S51(0) - S, (27)

=diag 1/B,) (WK 3+ y2WIK )[U —Us\(L 22
ap=diag 1/B,) (WoKs + 7 WoK UL —UsdLT - (22) e boundary conditions, it is possible to devise a system

It may also be obtained by a least-squares solution by pr@t€duations, where displacement conditions are enforced at the
multiplying both sides of Eq(21) by q,? where superscript nodal points and the stresses at the Gaussian integration points

denotes conjugate transpose, to square up the coefficient matri%vgpm the elem_ents. The_refore, any combination of gnd displace-
a, and then inverting. ment and traction state is amenable for representation.

In the case of a short cylinder and/or a cylinder in which the
23) fundamental inverse decay length is such that it is not possible to
uncouple the effects on the two ends, then the coefficiepsnd
a, must be solved simultaneously using E€s?) and(19). Such
cases occur in highly anisotropic materigdge Choi and Horgan
Traction Conditions at Tip End z=0. The displacement [22,23, for example and thin-walled members. Enforcing appro-
and stress representations for the tip end have the form priate conditions on both ends provides the equations for solution
_ . _ of the ;. For a short cylinder, it should be recognized that a
U(2)=Usu2)+®:EilyZ]ar; o(2)=osd2)+ onEalyjZ]er.  ee dimensional finite element analysis of the cylinder may be
(24 numerically more expedient. The only drawback to a three-
At the tip end, only stress components,,ay,,0,,) are in- dimensional analysis is that it does not yield any information on
volved in the prescribed traction. L& denote these prescribedthe inverse decay lengths.
stress components ix of solution vector(24) evaluated az=0
for the N Gaussian points of the total discretized model of th
cross section.

azz[‘l’?q’z]_l‘bg[UL_ UsuL)]

A least-squares solution was used by Kazic and Ddng.

Examples

ST=[ dl Consider the two rectangular cross sections as shown in Fig. 1:
L0 Oy21: 9221, Oxz22:Ty22: Tz2257 " TxzN» FyzN» TzzNllz=0 (1) 3 homogeneous, isotropic beam g@iia two-layer+30 deg

(29 angle-ply composite beam, both of unit heigtitand the same
Extracting the same components frerg, ando-; , denoting them helght-’to-W|dth ratioH/W of 15 Let E and »=0.25 denote
asSsyandS;, and invokingE,(0)=1 allow the traction boundary Young's modulus and Poisson’s ratio of the isotropic material.

conditions az=0 to be written as The material properties of the composite material are
— - - - E G G
S=SsU0)—Siay or Sy =Ss(0)—S. (26) E_Lzlo; ELTZOA; ETTZO.S; =03 pri=0.25
T T T

Note thatS, is rectangular whose row and column dimensions are
N and the number of eigenvectors fraln used in the represen- (28)
tation. The accuracy of this representation is dependent on ted theC;; properties, transformed to the30 deg orientations
number of modes used. It is usually possible to truncate a numivéth respect to the coordinate axes, have the values

[ 1.7033  0.3148  2.0804 . +1.0194
0.3148  1.0831 03781 - +0.0549
2.0804 0.3781  6.2848 - +2.9483
C=Er 0.3750 : 70.0433" (29)
+1.0194 +0.0549 +2.9483 : 2.0705
I +0.0433 : 0.3250 |
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Table 1 Subset of eigenvalues for isotropic beam for decay

decay lengths from the tip end. There are an equal number of

from tip end eigenvalues of the same magnitude but with negative real parts
Extension Bendingy-axis applicable for d_ecay from the root e_nd. Since the dimenBIc_ior _
Mode y Mode y both cross sections was unity, the eigenvalues are normalized with
" 4309022757 1 10816 respect to the dep_th, |.e_¥:WH where y is that for a cross
34 63453 3 3558 53 6.2128 1.9922 ;sr:ectlon with a specific _helght andrd/W ratio of 1.5. Comparing
77293 45 11.23864.1136 e real parts of the eigenvalues between Tables 1 and 2 shows
6,7 8.8186-2.6749 6 11.2815 that those for the two-layer angle-ply composite cross section are
8,9 10.7673 3.0861 7,8 11.592% 3.0396 smaller, indicating longer inverse decay lengths or greater dis-
10 12.5522 9,10 12.66933.5974  tances needed to attenuate end effects, an observation of the effect
Bending/x-axis Torsion of anisotropy that has been reported by other researchers.
Mode v Mode v For a fully restraint condition at the root end, all displacement
12 6.7078 3.0853 12 21194 1.1796 components must vanis_h. In Fi_g. 2is shown_a measure of the
34 7.6709 3.3558 3 8.2404 deviation from zero of this condition as a function of the number
5 8.0149 45 8.66492.5180 of modes used in the modal representation. The cumul&tixe
768 1 1%?5‘;03693 g,7 11-?%2%3%%789 is defined as the sum over all nodes of the finite element model of
9,10 13940233478 9,10  14.207a36504 (N normalized displacement, i.e.,
Error= %es (Uengt USV)2+ (vengtv SV)2+ (Wengt WSV)2
Table 2 Subset of eigenvalues for two-layer beam for decay Uzmax
from tip end (32)
Mode y Mode y where (Uend,Uend:Wend are components of the end solution, and
U max is the largest total displacement of the Saint-Venant solution
213 ) 10%;%93653 1131’1%12 32-191%%%-523 for a particular load condition. In the case of the two-layer beam,
] 55599 15 30865 the designations of extension, bending, and torsion modes are
56 25288 0.9451 16,17 3.7464 4.1427 meant as the predominant behavior inasmuch as there is coupling
7,8 2.633%2.7230 18,19 3.8596:1.9040 of all of these behaviors in this cross-section. It is seen that with
9,10 2.9581%3.0187 20,21 4.036%1.4298 an increasing number of modes, the cumulative error is reduced

accordingly and their magnitudes are reasonably small.
Bar graphs of dimensionless amplitudes af, or amplitude
ratios «; / s Where a,y is the largest amplitude, are shown in

Completely fixed conditions at the root end were assumed for bdigs. 3 and 4 to show the participation of each mode in the modal
cases, i.e., all displacement components are zero. Loading at shenmation. The occurrence of a pair of identical bars indicates
tip end consisted of extension, bending, and torsion, and thewmplex conjugate roots, and a single bar is for a real eigenvalue.
assumed distributions are shown in Fig. 5. For the isotropic beam in Fig. 3, recall that one-fourth of the cross

For the isotropic beam, one-quarter of the cross section wsaction was modeled with symmetry/antisymmetry interface con-
modeled (64 elements/225 nodes/675 degrees-of-freedomr ditions along the two planes of structural symmetry so that the
gether with combinations of symmetry/antisymmetry interfacamplitudes for each case are associated with its own set of eigen-
conditions about the two planes of structural symmetry. In thesctors. The amplitudes in Fig. 4 for the two-layer beam for all
two-layer cross section, the entire cross section was mod&k&i three loading cases are associated with the same set of eigendata.
elements/433 nodes/1299 degrees-of-freedom For loading conditions at the tip end, an axial forRg a bend-

The subsets of the lowest eigenvalues for these two beams g momentM, about thex-axis and a torqué/, were consid-
given in Tables 1 and 2. These eigenvalues define the inveesed. Unit values of these loads were applied in the form of uni-
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Fig. 2 Errors in representation of fully restraint displacement conditions
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Fig. 3 Normalized amplitudes for homogeneous, isotropic

beam state. Such states are typical at the tip and root ends, when the
boundary conditions on the applied tractions and/or prescribed

) . . displacements do not follow the distributions of the Saint-Venant

form stress blocks over various portions of the cross section &§ytions. As both fields are associated with the same resultant

shown in Fig. 5. Also, shown on this figure are the selftgrces and/or moments, the difference between them must be a

equilibrated stress stated for extension and bending. That for t@é‘lf-equilibrated state.

sion is not gi_ven because of th_e di'fficulty in presenting the_ Saint- The end effects are represented by eigendata extracted from an

Venant torsional stress distribution clearly, however, it Wagigebraic eigensystem. This eigenproblem is formed by using an

nevertheless a self-equilibrated stress state. While both cross $8&5onential decaying displacement form in the homogeneous dis-
tions were analyzed, only results for the two-layer composite

cross section are shown herein. Results for the isotropic cross
section describe the same sort of behavior as the two-layer beam

and do not enhance the discussion, so they are not included here. L 3 n
A plot of o, for extension along thg-axis atx=0 is shown in - i N

Fig. 6, and that for bending in Fig. 7. Two sets of shear stresses, D q i ' j

oy, andaoy,, on either sides of the lings=0 andx=0 along the f B

x andy-axes are shown in Figs. 8 and 9. With an increasing the ‘
number of modes, the representations, converge onto their respec- axial force SV endeffect
tive prescribed loading conditions. It is remarked that since g T 7 N

%

2

=
%

2
53

stresses are obtained from differentiation of the displacement, the
stress eigenvectors are inherently less accurate than the displace-
ment eigenvectors. Therefore, more modes are needed for a com-
parable accuracy in the representations of stresses than of the
displacements. No plots of the amplitudes of the various modes
participating in the representations are given, but they would ap-
pear very much like those in Fig. 4 for representation of the dis-
placement end conditions where the fundamental modes show a
greater presence in comparison with the higher modes.

20
27
3528
3%
%
%

55

3%

Concluding Remarks

torsion
This paper was devoted to the representation of end effects or

the displacements and stresses of any arbitrary self-equilibrated Fig. 5 Prescribed traction conditions at tip end
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1 Introduction residual membrane stress distributions are assumed to be self-

In a recent papelrl] the authors have presented analytical angnusl:fr:ated' Despite this, buckling can happen under external

numerical considerations of buckling phenomena in thin plates orzjhough the problem treated here is of general interest in plate
strips under in-plane loads which typically appear during rolling,,ckjing analysis the results are of practical relevance, too; for
and leveling of sheet metal. Buckling due to self-equilibratinghstance, with respect to the control of the rolling process in strip
residual stresses, caused by the rolling process, possibly in cgsiing mills or the reliability of the deployment of deployable
junction with global tensile stressdglenoted there as “rolling structures containing strip shaped members. Regarding flatness in
buckling”) as well as buckling during the levelling proces®- cold rolling of strip metal an overview on the current literature
noted there as “stretching buckling” or “towel buckling’were can be found iri6].

considered. Analytical estimates were derived and compared

against results of numerical simulations and field observations.

Different buckling phenomena appearing during the rolling pra2 Formulation of the Mathematical Model

cess have been investigated in several other papers, as, for iny strip of infinite length (representing, for example, a sheet
stance, in the classical one by U. Fiscfi&f; or more recently by metal in the rolling pathwith the widthB and a plate bending
Y. Tomita and H. Sha3] or K. Komori [4]. stiffnessK = Et3/(12(1— »?)) (with E being the Young’s modu-
In [1] jumps of buckling modes due to variation of the globajys, » the Poisson’s ratio, antl the thicknesk is loaded by a
strip tension were found on the basis of the derived analyticgé”_equnibrating residual membrane force distributi®m,(y)
solutions. A more detailed analysis, which is presented now, coaNg(y) and a constant global tensile membrane fo¥ge Thus,
firms the estimations derived [fi] and focuses on the variation ofthe membrane force distribution {@dependent of the longitudi-
the buckling pattern with increased global strip tension. It isal coordinatex) given by
shown that, in addition to mode jumps, the buckling pattern s
changes continuously over a wide range of the tension force, M(¥) =NG(Y) +No, (1)
which was not found in1]. This continuous mode change is(see Fig. 1L
mathematically described by the conditions for envelopes of func-The following dimensionless quantities are introduced:
tions with varying parameters. Further extensions in comparison _ : 1 1
to [1] are that a wide variety of different characters of residual 7=y/B, with —Bl2<y<B[2,~z=n=3,

stress distributions are considered and analytical closed-form so- a(y)—9(n),ny—ny(7)=Ng(7)+Ng, 2
lutions are provided for describing the buckling modes. ) )

In [5] strip buckling under homogeneous longitudinal tensile N= E IN :E
stesses is considered under specific boundary conditions. Here the Ka?2' 70 Ka?-

boundary conditions are rather trivi@ghfinitely long strip and the Becausén,, must be self-equilibrated the following condition

must hold:
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membrane forces, while in the case of polynomial distributions
higher mvalues are typical for residual compressive forces con-
centrated in regions close to the edges of the stripnfe2 both
types of force distributions look very similar. As a consequence of
this fact, form= 2 the results for cosine and polynomial distribu-
tions are almost identical.

Both distributions, i.e., the cosine and the polynomial one, lead
to

g(n==3=-1. (7)

This means that a positive value Mfin Eq. (1) corresponds to
compressive residual membrane forces in the edge regions of the
strip.

In order to apply the Ritz approach as described lih we
introduce a Ritz-ansatz, i.e., a trial function, for the buckling
pattern

Fig. 1 The strip buckled under residual membrane forces and
global tension

X
W(X, 7) = QWn(X, 7) =0 cos—~ (2| 7])"(signp)*,  (8)
In order to capture a wide range of symmetrical residual mem-
brane force distributions which typically lead to “edge wavewith k=1 ....
buckling,” i.e., a pattern showing waves with maximum wavenode.
heights at the edges of the strip, the following distributions are As shown in[1] corresponding symmetrical and antimetrical

antisymmetrical modek=2 ... symmetrical

assumed:
(a) Cosine distribution:

9%(5)=Cncod"my —1 with m=1,2,... and—3<y<%.
4)
The equilibrium condition foRn,, (%) leads to
172 -1

Cn=x= f cos"wrn dy (5)
2 0
(b) Polynomial distribution:

1
g(m)= —[1-(M+1)(2|n)™ with m=12,..... (6)

which also complies with the equilibrium conditi¢8).

modes lead to the same critical residual stress intensities and,
therefore, (sigm)* in Eq. (8) can be omitted.

Both the half-wave lengthand the exponent, which allow a
wide variety of the buckling pattern, have to be determined ap-
propriately in order to estimate the relevant, i.e., the minimum,
buckling force amplitude as a function of the global tension force:
N¢(Ng) or NP(Ng) for a given exponenm in Eq. (4) or (6),
respectively.

3 Analysis

We follow the “classical” concept of minimization of the total
potential energyy of a thin plate deformed also in the direction
normal to the middle surface and subjected to a membrane force
state®n,,+ N,. The expression for the total potential energy can

The superscripts ¢” and “ p” refer to the cosine and the para-be taken from the literature; see, eld], and specialized to this

bolic residual membrane force distributions, respectively.
Due to the variable exponemn in g°(») and g°(#%) the re-

quired large variability of residual stress distributions can be pro-
vided (see Fig. 2 It should be noted that for the cosine distribu-
tion increasing exponents lead to wider regions of compression

(b)

Fig. 2 Typical residual membrane force distributions; (a) ac-

cording to (4), (b) according to (6).
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problem reads as follows:

K Pw w2 -
777 ) || 5e T3] T2
" PPw Pw [ w2 40 9
P 2 | axay : ©)
—1 R N &W)de 10
¢M*§ Q( nxx+ o) W ' ( )
N2LB
= SEr PP duT by, 11)

The application of Gauss's theorem leads to the following
modified formulation of¢g

K W JPw ZdQ K1 oW 9 aw)d
$o=3 | \aa T 52| 4HKUA=9) | S oy 58 )98
(12)

¢g is the contribution tog due to bendingg)y that due to the
membrane forces, angly  is the potential energy of the boundary
force Ng at x=0 andx=L>B, which, however, does not play
any further role in the linearized theory.

According to the procedure with a single-term shape function
we have just one degree-of-freedom, which is related to the am-
plitude g of the buckling mode(see Eq.(8)). Stationarity of
»(qw,) requiresdp/dq=0, which immediately leads to the equa-
tion

$s(Wn) + dm(Wn)=0. (13)
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If we now insert the membrane state according to @&yor (6) 08 [
which depends on a positive constahtsee Eq(1)), the Eq.(13) '
can be rewritten with the dimensionless variables defined by Eq.

(2): 06t
~ ~ l
Ny n(Wn) +No®y n (Wn) + Pp(Wn) =0, (14) B 0a
where ¢y, y and ¢y, \ are the contributions tgy due toN=1
andNoz 1, respectively. This leads to 02 |
_ ¢B(Wn)+NO¢IQ/I,NO(Wn) 0
Nn=" ban(Wn) (19) o 2 4 & 8 10
n
as critical residual membrane force intensity corresponding to the
Ritz-Ansatz with exponer. Fig. 3 Half-wavelength of the relevant buckling mode as a

With Eq. (8) after some algebraic manipulation the followingfunction of the exponent  n in Eq. (8)
mathematical structure of E¢L5) is obtained:

5 5 1 N (B/H?  8n(n—1) . 16(1/B)?n?(n—1)?
n— 2n+1  2n+1 #3(2n-1) 74(2n—3) . 1 1 8 n(n—-1) 16n%n-1)>2
8(1—v)n / 12 i M= o 1% @ 2n-1 "7 2n-3 ©
+—— 2 279)“"dy]|. 16
p J’o 9(7)(2n)~"dn (16) 8(1— v)n 12
+— 2 [Cn(cosmny)™—1]
The right-hand side of Eq(16) contains a further unknown . 0
entity, namely the half-wavelengthn the x-direction—expressed
in the dimensionless quantityB. Since we look for the minimum X(27)2dy (21)
possible value of the buckling paramedéy, we find| by mini-
mizing N, with respect to this quantity: and
dN, 1/2
a1/B) =0. 17) fg(n,m)=1/[2(2n+ 1)}0 [C(cosmn)™—1]
This additional relation allows us to finty, and, as a conse- )
quence,N,min(Np). In the following text these quantities will be X(2m)"dn|, (22)
used without the subscript “min.” Equatiol?) yields, after
simple calculation, with « given in Eqgs.(18) and(19).
For the parabolic distribution of the residual membrane force
11B= 1« (18) e obtain
w RE(No) = F2(n) + 5(m) N, @3)
2 12
T 2n—-3 .
K= | 2o (19) Wwith
4 \n“(n—21)4(2n+1)
_ _ 2 2n+1\2 2n+1
The relevant exponemt will be determined below. f2(n,m)= —(2n+m+1){ 2(n—1) n=3] " an-1
It should be mentioned thd?B does not depend on the as- ™
sumed residual membrane force distribution. This is because
d(7), which determines the membrane force distribution, appears +2(1+v)(2n+ 1)] (24)
only in the denominator of the r.h.s. of E(.6) which does not
containl/B. Hence it disappears when Ed.7) is evaluated. and
It can be shown that the contribution due aéw/dy? in the
bending related portion of the potentigl (see Eq.(9)) vanishes o _(2n+m+1) -
for n=0 and forn=1. For other values of the exponent 3, in 2(nm)= 2n ' (25)
Eq. (8) the conditionn>§ must be met in order to achieve physi- . . . o
cally meaningful resulté.e., no singularities in the corresponding’ Nese functions are shown in graphical form in Fig. 4.
strain energy densily For a givenm, representing the character of the residual mem-
Figure 3 shows this result in graphical form. brane force distribution, the critical intensity,(Ny) represents

For n>1.73 increasingn leads to decreasing The interval for every exponenh a straight line in theN—No-diagram (Eq.
[1.5, 1.73 appears to be aphysical; however, it is of no relevand@3) is a linear relatioh Figure 5 shows this situation fon=1 in
because, as will be shown below, the solutions either with the case of a cosine distribution of the residual membrane force.
=1.0 orn>1.73 lead to smaller critical residual membrane forc&his example is comparable with one of those considerdd]in

intensities than those withe[1.5,1.73. This figure makes clear how the proper exponeritas to be
For the cosine distribution the solution of the Ritz approactound as a function of the global tensidh and the given expo-
described above leads to nent m: Finally, the critical residual membrane force intensity
o _ must be
NR(Ng) =f1(n)+f3(n)No (20) - -
N(No)=minN;(No). (26)
with n
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Fig. 4 Functions f{£(n,m) for different exponents m; full lines refer to cosine
distributions, broken lines to parabolic distribution of the residual membrane force

This meanN(N,) is represented by the inner envelope as formeibns of the residual membrane force and analytically for para-
by the manifold of straight lineBl(N,) with a continuously vary- bolic distributions. In the latter case these expressions read:

ing exponent. ~ ~ o a4 m—1 4 |12 2 3(1—
As long as the lineN,_1 o(Np) is below any otheN,(No) line d_1: —zn{(4 ) 1+ 5 3) T} + ( 1V)
with n>1.73, i.e., for 6<Ny<NZ , this inner envelope is given %" n-= n-= n—=
by thisN,,—; o(No) line. The valueNg=Ng , corresponds with the 1 m—1 m+1
situation where the buckling mode jumps from a pure twisting to tA-2y) |+ |2+ 2
a wavy pattern; see point A in the detail in Fig. 5. Btg>Nj , i
i.e., for the region in whiciN,(No) with n>1.73 is smaller than % _4( 14 4 1
N,=10(Nop), this envelope is, for givem, implicitly described by 2n—3 (2—3/n)?
F(N,Ng,n)=N—f3(n)—f,(n)Ny=0. 27) 4 3(1-» ]
Therefore, the condition for the envelope (2=1n)* (1-1n)?
JIF df; df,. dfg_ m+1
=" dn" an Ne=0, (28) TR (31)
yields Figure 6 shows the residual membrane force intensﬁli(efso)
df df for different exponentsn, and Fig. 7 shows how the half-wave
No=— 1/, 72 =Ny(n). (29) lengthl/B decreases with increasimg, for different exponentm.
dn dn Figure 5 shows that a sudden mode jump from the pure twisting
This way the critical intensity can be expressed as a function B°de, i-e.,n=1, to a mode withn>1.73 appears at a certain
n only instead oﬂN\l(No): value of Ny, denoted ad\j . In the case of a cosine-distribution

of the residual membrane force with=1 this jump appears at
(30) Ngmlo. According to Eq(19) the half-wavelength assigned to
the pure twisting moden=1) goes to infinity; that means that a
very long strip is just tilted over the whole length, compgté
This is the reason why the lines in Fig. 7, showing the half-

R — f ‘ df, /df,
(m=fm-fo(N| 5=/ 45

Finally, N(_NO) can be determined by evaluating E¢89) and
(30) for continuously varyingn. wavelengthl/B in dependence of the global strip tensiﬁe for

Equations(29) and (30) require the first derivatives of;(n) .
and f,(n) which are calculated numerically for cosine distribu-d'fferem exponentsn, must not be extrapolated for small values

200 T
. 600 - .
N, _ m=2 P
150 | N L
400 | m=1 - <
m=2 . / // }/v, N
100 \// e =
m= 5//// ’/,/
200 t \y:// ,/,/
50 t y
/e
/ 74
0= : -
0 | ‘ . . 0 200 400 600
0 N 20 40 60 . 80 No
Ny
~ B Fig. 6 erendence of the critical residgal membrane force in-
Fig. 5 Dependence of N, on N, for a cosine distribution of the tensity N on the global strip tension N, for different exponents
residual membrane force with m=1. The detail shows that n  m; full lines refer to cosine distributions, broken lines to para-
€[1.5,1.73] is not relevant. bolic distributions of the residual membrane force
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0 200 400 } 600
No
Fig. 7 Depend~ence of the half-wavelength  //B on the global
strip tension N, for different exponents m; full lines refer to

cosine distributions, broken lines to parabolic distributions of
the residual membrane force

of No; they end alNo=N3 , where a jump of the half-wavelength

I/B from a finite value to infinity(for an infinitely long strip
happens.
For No>Nj the buckling mode changes continuously, ire.,

increases monotonically and smoothly. Since for the parabolic

distribution the relationd,_; (N) andN(Ny), i.e., the enve-
lope, can be expressed in analytical folf, can be determined

also in analytical form. This is, however, not so easy for the _
cosine distribution, for which closed-form expressions are not

available.

4 Asymptotic Considerations

The shape of the envelope might lead to the expectation of an

08

e~

0.7 1

06

05 |

0.4 |

0.3 - .
0 200 400 600

N

Fig. 8 Dependence of the half-wavelength  //B on the intensity
of the residual membrane force distribution N for different ex-
ponents m; full lines refer to cosine distributions, broken lines

to parabolic distributions of the residual membrane force

No=558n=30
N =969

No=1284,n =40

asymptotic approach of the critical states to the boundary lines

N—Nj, for very largeN,; see[1].

For parabolic distributions of the residual stresses asymptotic Ny =2445,n =50
considerations can be performed analytically. As mentioned

above, increasinEJo leads to increasing and, due to Eq(19), to
decreasind/B.

Due to this fact considerations of larlg can be performed on
the basis of expressions for large For very largen, n>1, we
come up with the following simplified formulas:

16
fi——(1-»)n?, (32)
T
f,—1, (33)
and
N 64 1—v 3 a4
o(n)ﬂgmn , (34)
and finally

-~ 16(1- m+1)\ R
() 2”)(2421_”)) N2%+Ro.  (39)

a
Hence, it can be seen that the differeriée- N, grows with
increasing global strip tensid¥, in the order ofNZ*. Therefore,
the above-mentioned expectatibir- Ny for very large values of
Ny, as argued ifi1], could not be confirmed.

5 Practical Observations

N =3448

Fig. 9 Buckling patterns for different global tension forces No

tion pattern can be observed. This pattern represents the post-
buckling deformations initiated by bifurcation Bip(N).

The corresponding buckling mode shows different half-
wavelengths, depending on the distribution and on the intensity of
the residual membrane force distribution, see Fig. 8.

Figure 9 shows how the buckling pattern changes with increas-
ing global tension forcél,. IncreasingN, leads to a concentra-
tion of the buckles towards the edges of the strip and to a decrease
of the buckling wavelength.

6 Conclusions

The buckling and post-buckling patterns of thin strips under the
action of residual membrane forces and global tension show in-
teresting features: With rising global strip tension a single-mode
jump can be observed from the pure twisting mode to a wavy
mode; then, as the global tension continues to increase, the buck-
ling mode remains wavy with continuously decreasing wave-

During strip metal rolling processes the global tension fordengths and waves concentrating more and more towards the
usually is large enough to prevent the strip from buckling undedges of the strip.
residual stresses. However, if this tension force is reduced a criti-It has been shown that the amplitudes, i.e., the intensities, of
cal situation can be reached in which suddenly a wavy deformdifferent residual membrane force distributions which are critical
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with respect to buckling of a strip can be calculated analytically as ~ gewichtsgruppe bildenden’hgseigenspannungen,” Z. Angew. Math. Mech.,
functions of the global tension force. A wide range of character- ?6' P 33¢- 4 Shao. H. 1993 “Buckiing Behavior in Thin Sheet Metal
istic residual membrane force distributions has been considered™> °M"@ *. and sShao, ., »buckling Behavior in Thin Sheet Meta
= | d di ided which i bi . Subjected to Nonuniform Membrane-Type Deformatio\dvances in Engi-
. ormu QS an, lagrams are. provided wi IC; » In_combination neering Plasticity and its Applicationd/. B. Lee, ed., Elsevier, Amsterdam,
with the dimensionless formulation presented in the paper, ensure pp. 923-930.
quick and simple estimation of the critical residual membrane[4] Komori, K., 1998, “Analysis of Cross and Vertical Buckling in Sheet Metal
force intensities. This is of practical importance, for instance, in  Rolling,” Int. J. Mech. Sci. 40, pp. 1235-1246.

the case Of buck“ng dunng the rol“ng process of thln stnp me’[al[S] Friedl, N., Rammerstorfer, F. G., and Fischer, F. D., 1999, “Zum Beulen von
Platten unter globalem Zug,” Z. Angew. Math. Mecf9, Supplement 2, pp.

545-546.
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Stress Concentration Reduction at
a Reinforced Hole Loaded by a

K. T. Chau B d d C- I I I =
M. ASHE ondaea uircuiar inciusion

X. X. Wei This paper considers analytically the stress concentration in an infinite plane loaded by a

circular inclusion, which is bonded to a reinforced hole in the plane. The pulling force of

Department of Civil and Structural Engineering, the inclusion is modeled by distributed body force. The infinite plane, the reinforced ring,

The Hong Kong Polytechnic University, and the circular inclusion can be of different elastic properties. Airy stress function with
Kowloon, Hong Kong, China body force potential was used to solve the problem analytically. Numerical results show

g-mail: cekichau@polyu.edu.hk that the maximum tensile hoop stress at the hole boundary in the plane can be reduced to

becoming negligible if an optimum stiffness ratio between the plane and the rivet is
chosen (normally a harder material for the reinforced ring comparing to the plane is
needed). An optimum thickness of the reinforced ring can also be determined to further
reduce the hoop stress concentration. Therefore, the results of the present study provide a
new theoretical basis for designing a reinforced rivet ho[@OI: 10.1115/1.1357869

1 Introduction different elastic properties. The main motivation of assuming a
Stress concentration at a hole loaded by an elastic inclusionouﬁe'r.ent material for the rivet steps from the application of the
. L . SlIONefstic solution to steel rivet-rock panel systems in cladding wall
one of the classical problems in linear elastidity]). One main design(23))
application of the inclusion problems is in the _deS|gn of rivet- To simplify our analysis and to model the epoxy sealed con-
connected structures and compondat_g_.,[z,s]). Since the_ early nections in rock panel systems, only the case of bonded inclusion
20th century, engineers, mathematicians, and experlmental\gf%s considered. And our main focus will be on the tensile hoop
have worked on the inclusion problems in various branches ress at the reinforced hole, as the hoop stress has long been

engineering and mechanics. recognized as the most important stress around the ()
One of the first experimental studies on the stress concentration 9 P (.

due to rivet load is the photoelastic experiment done by CpKer
while the first theoretical treatment is apparently done by Brickl Mathematical Formulation
[5]. Among the circular inclusion problems, an elastic plane . , o oo _
loaded by a pinned-rivet has received the most attentég., For two-dimensional stress analysis in cylindrical coordinates
[6—15], and others One simplified approach is to assume théf.6). we adopt the Airy stress functiop with nonzero conser-
circular inclusion or the rivet as rigif9,16—18). When the elas- Vative body force([22]):

tic circular inclusion is bonded to the elastic plane, exact solution 1de 1 e

can normally be obtaineg.g.,[19—-23). However, when separa- op=——+—=5—5+V,

tion is allowed to develop between the plane and the circular ror redr

inclusion under external loads, numerical approach is normally 0 (1de Fn

required to solve the resulting equatioid8,24—31). Because Org=— — ——), Ogo=—7 TV 1)
the maximum tensile stress concentration is located at the hole arir a6 ar

boundary, the idea of reinforcing the hole boundary has been pighere V is the conservative body force potential. For isotropic
posed([3,32—-39) and has long been used in practice. The reirelastic materials, substitution of these stress components into the
forcement is normally made of a thicker rim of the same materigbmpatibility equation leads to the following governing equation

around the rivet hol€[3,39,4Q). for ¢:
In this paper, we propose a new approach that a different ma-
terial for the reinforced ring is used, instead of using a “compact” V4o=V2V2p=—2 K;l v2y )
rim approach([3]). Another new feature of the present analysis is k+1
the use of body force in modeling the rivet-load, instead of as;
suming a concentrated load located at the center of the circular
inclusion (e.g.,[6,18]). The idea of modeling rivet force as uni- , 190 d 1 42
form distribution body force is apparently from Hyer and Klang v - (;_r(rg + 12 962 (©)

[14], and this approach has further been extended to case of non- ) )

uniform distributed load by Ho and Chd23]. The same ap- IS the plane Laplacian operator in polar form. The two-

proach has also been used to consider the stress in finite sifigrensional elastic constantequals to 3—4for plane strain and

loaded by a bonded-rivet made of a different mateffidl]). In (3~ »)/(1+v) for generalized plane stress, wheris the Poisson’s

fact, except for the recent studies by Ho and CF2@,41, none ratio of the material. - o

of the previous studies allow the rivet and the elastic plane to haveFOr the reinforced rivet problem shown in Fig. 1, the stress

must be bounded in Domain Il wherapproaches zero, while the
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constants. More specifically, it is straightforward to show the va-
: lidity of the following expressions:
~ Domain I
cosé coséd cosé
?\ a§}>=fo[2AR2 +BR? 2CR'—; } (12)
r r r
sin sin
g ‘7%)—%{5':\’27— 2CR4r_3 , (13)
cosé cosé
I aﬁ,lg—fo{eBRz - +2CR* |, (14)
N , foR?
240! ):T{[A(Kl'i' 1)+B(x;—1)]Inr cosd—(A+B)cosd

Fig. 1 A sketch for a circular elastic inclusion embedded into cosh

a reinforced hole in an elastic plane. The rivet load is modeled + 1)+ + ; +

by uniformly distributed body force. Domains I, Il, and Il are the [Alxk1=1)+B(k1+1)]0'sin 6} fOCR4 r? (15)
elastic plane, the circular inclusion, and the reinforced ring.

2
21 u(l)zfo_R{_[A(K +1)+B(k;—1)]Inr siné
1Uy 2 1 1

dP(R,0=0M(R,0), 4) .
—(A+B)sinf0+[A(k;—1)+B(k,+1)]60 coso}
a3 (R,0)=01}(R,0), (5)
sinég
uP(R,0)=uM(R,0), 6) +foCR— (16)
Uy (R.0)=u (R, 0), (") Domain I
whereu is the displacement and the bracketed superscripts denote @
the Domain number. The first two of these equations represent the oy =fo(2D—1)r cosé, (7)
continuities in normal and shear tractions, whilst the latter two
represent continuities in radial and tangential displacements. Simi- U(,fg): fo(6D—1)r cosé, (18)
lar continuity conditions between Domains Il and Ill ora can
‘l:‘)e”o_bta(iz)edwt))y replacing the supersciipt by “(2)”, and R by o2=2f,Dr sing, (29)
a’in (4-(7).
. . Ko™ .
3 Determination of Stresses 2uui?=1fo| D(kp—2)— 7 r?cos6+ fya’Cy sin 6
As shown in Fig. 1, one new feature of the present analysis is ,
that the rivet load is modeled by uniform distributed body force +f0a°C; cosé), (20)
on the rivet instead of considering a concentrated force at the
center of the rivetie.g.,[6]). The body force potential for this 2 _ kol 2
uniform distributed body force was given by Karasufe2]: 22Uy =To| D(kpH2) resing+foa"C, cosf

V=—fqr cosé (8) —foa?C, sin 6+ Cqr, (21)

wheref is the magnitude of the uniform distributed lo@x force
per unit volume. The total rivet force per unit thicknegs(shown
in Fig. 1) can be determined bf7wa®. The normal stresses in-

Domain ll:

duced by this body force potenti®l is proportional to cog. In g<”3): fO[ZEr cosO+ 2FR? cosd +GR? cosd 2HR* co;se ,
view of this, the following forms of Airy stress functions for r r
Domains I-Ill are propose23)):
(22)
P _ CR?cos#
o' V=foR Arfsing+Brinr cosa+f , 9 _ sing sing
aﬁ'f;)—fo[zEr sing+GR———2HR*——|,  (23)
e =f,Dr3cos¥, (10) ' '
_ @_ , Cost , Coso
e® =14 Erd cosd+FR?r 0 sin0+GR?r Inr coso gy = fol BEr COSO+CRI—— +2HR"—7—|,  (24)
HR*cos# foR?
t— (11) 2M3u£3)=7{[F(K3+1)+G(K3—1)]Inr cosf
whereA, B, C, D, E, F, G, andH are unknown constants to be _ _ i
determined by the continuity conditions. Note that both the (F+G)cos+[Flxg=1)+G(xst1)]0sin 6}
boundedness condition at the center and the decay condition at ,C0st 5 5 .
infinity are identically satisfied by these choices. +fHR — 7=+ foE(ks—2)r" cosfd+C4Rsin ¢
Substitution of(8)—(11) into (1) leads to the stresses in terms of
the unknown constants. Integration of these resulting stresses +CsR? cosd (25)
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4 foR? ) Similarly, the continuity of radial displacement between Do-
23U )ZT{*[F(K3+1)+G(K3*1)]|I’1 rsing mains Il and Il gives

—(F+G)sin0+[F(k3—1)+G(x3+1)]6 coss} C,=0, (39)

+f HR4Sin0+f E(k3+2)r2sind+C4R? cosd
0 2z T ToElks I 4 1
gzD(Kz 2) _4 gZ(KZ 1) ngz E(K'S 2)

—CsR2sin#+ Cg4Rr (26)
. F G
whereu; andx; (i=1,2,3) are the shear modulus and plane elas- _ +1DIna-1]- — —1Dina-1
tic constant for Domaini. The additional constant<; (i 2p [(xs+1) ] 2p [(x5=1) ]
=1,...,6) areresulted from the integration process and corre- C. H
spond to the magnitudes of rigid-body displacements. _ 5 —=0 (40)
p P
4 Determination of Unknown Coefficients where {,=u3/u,. By considering the continuity of tangential
41 Single-valued Condition. By considering the unique- glsp;%((:)(leqr:.ent between Domains Il and 1l yields the following
ness of the physical stress and displacement components, the mﬂH '
tivalued terms involvingécos# and #siné in (15-(16) and
(25)—(26) must be identically zero. This leads to the following C1=C3=0, (41)
conditions:
A(ky—1)+B(k+1)]=0 27 1
[ACky=1)+Blxy + 1] (27) £D(ky+2) = 7 Lol ko= 1)~ £:Co— Elk+2)
F(kg—1)+G(kz+1)=0. (28)
4.2 Continuity Conditions. Considering the continuity of + i[(K3+ Dlna+1]+ E[(K3_ Dina+1]
normal stress om=R between Domains | and lll, we substitute 2p 2p
(12) and(22) into (4). This leads to Cs H
2A+B—-2C—2E-2F—-G+2H=0. (29) +7—,?:°- (42)
For the continuity of shear stress o R, we substitutg13)
and(23) into (5) and obtain Substitution of(34) into (28) and(31), then the result int¢27)
B—2C—2E—G+2H=0. @0) 9Ves
Subtracting(30) from (29) yields p(ry—1)
A=F. (31) B= 1) (43)

Similar consideration for the normal and shear tractions on the
interface between Domains Il and lil.e., onr=a) leads to the  To eliminateCs, we add(36) and(38) to obtain
following equations:

2F G 2H LA+ B—2¢,C+2Ek;—F—G+2H=0. (44)
2D —2E— 7—;4‘?—1:0 (32)
— Eliminating C, andC5 from (40) and (42), we have
2D-2E——+—=0 (33)
p P

1 F G 2H
wherep=(a/R)2. Subtracting(33) from (32) immediately yields 262D w5 La(Kp= 1) = 2B kst T 0. (45)

F=-~-. (34) So far, we have already determinédB, F, and G [see(298),
(31), (34), and(43)]. Then,C, D, E, andH can first be solved by
The continuity of radial displacement between Domains | angsing(30), (33), (44), and(45). Then, they can be substituted into

Il leads to the following equations, which are from subtraction(86) from
C4=0, (35) (38) and(40) from (42),
OAL(k+1)INR=1]+ ;B[ (k3 —1)INR—1] INR{— {1 [A(k;+1)+B(x;—1)]+F(k3+1)+G(xk3—1)}
+2{,C—2E(k3—2)—F[(x3+1)InR—1] —4E+2Cs=0, (46)
—G[(k3—1)InR—1]-2H—-2Cs=0 (36)

whereZ; = s/ u, . The continuity of tangential displacement be- 2P$2(2D — Co)—4Ep+ina[F(ks+1)+G(k3—1)]+2C5=0,

tween Domains | and Il leads to the following equations: (47)
C4=0, Cg=0, (37)  to yield C, andCs. In summary, the following solutions for the
LAl = (k14 1)INR=1]— ¢,B[ (ky— 1)In R+ 1] unknown constants are obtained:
+24,C—2E(k3+2)+F[(k3+1)InR+1] p p(ki—1) pka—1)
+G[(k3—1)INR+1]—2H+2C5=0. (38) A=F=-3 B=orrn’ ® a1y @O
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_p(I-li—katky) PP [Zp(il1)(§2K2K3)+(§1+K3)(§2K32§2K2+§22)} (49)
2(k1+1)({1tka)  A(41+kg)| PP(L1— 1) (Loko— K3) — (Lakat 1) ({1 k)
_ p({1—1) (k3—1) p? {1 i){ZP(Q_1)(§2K2_K3)+(§1+K3)(§2K3_2§2K2+52_2)} (50)
2(k3+1)(L1+k3)  Alratl) 4(l+kg)\{tks p° p*(L1—1)(Laro— K3) = (Laka+1)({1+ Kk3)
p%({1—1) 2 2p({1— )(§2K2_K3)+(§1+K3)(§2K3_2§2K2+§2_2)} (51)
4(K3+1)(§1+K3) p?(L1—1)(Laro— K3) — (Laka+ 1) ({1 + K3)
_ p?  [2p(£1=1)({oKo— K3)+(§1+K3)(§2K3_2§2K2+§2_2)} (52)
4(1+ k3)| P*(L1—1)(Laro— K3) = (Loka+ 1) (41 + Kk3)
I
(R K3 K1l1 (k1= 1) _ (k113
L P AP A T2t 200t D) 8)
2L~ D)1+ p(Lr— 1)1+ Lo k3— 1) (kg +
(£1— DI 2/2((% +i])(K§z+(f23) )(Kk3+{1) ) (1= £1- Kot K1) P
- 2 . 31 ' (it D)Lt ks)  2(4p+K3)
— + —
+z[“1 e D) F]H (53) 20(81=1)(Earr— K3) + (L1 19 (Loks= 2Uprrt £=2)
o l{ - P2(81= 1) (Lara— k3) — (Lorpt1)(¢1t xca)
_ K3  Kita plé1— 59
C5_PInR K3+1 K1+1) (K3+1)(K3+g1) ( )
(- Before considering the stresses at the hole boundary, it is in-
4o 2L (54) structive to consider various special cases of the present solution.
K3t {g Table 1 tabulates the solutions for various problems shown in Fig.

The final stress and displacement expressions can be obtalned?t!W'Ch are special cases of the solution for the problem shown in
back substituting48)—(54) into (12)—(26). Of partlcular interest Fig

are the stresses in the elastic plane, which are given by

o) =1,R L2 vk ]cose (55)
£ e
o= R[ L=—K ]sin 6, 56
0 6 53 ( )
olV=—fR{I 7 Pk 7 ]cose (57)
Table 1 The identifications made and the value of constant K
in (55)—(57) for the solutions of problems given in Fig. 2
Case Identifications K
| {=0, k=K 1-8— K3t Ky p
(K1t D)6t ks) (L1t Ka)
p(Li=1)+ it ks
PG~ D+ {1+ kg
I p=1,L=1, (1=, kp= Ky 11— 2(L+ 1)
2(k1+ D) ({+ Kp)
mn p=0,01={, (=1, kp=k3 1+ k1 —({t+ ko)
(k1 D({+K2)
\% {=11in Case lll,k,=«; 0
\4 {1=0,=0, k1= K=k 1+ k— Kk3(1+p)
K3(k+1)(1+p)
\ {—in Case Il or lll 1
- (k1 +1)

Note: x equals 5/3 for plane stress and 1 for plane strain

whereé=r/R is the normalized-coordinate and
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Of more practical importance is the tensile stress concentration
at the rivet hole in the infinite plane. By choosing appropriate
stiffness and thickness of the reinforced mate(ii@., Domain IlI
in Fig. 1), it is hoped that the concentration of the tensile hoop
stress can be alleviatgds we will show later that this is indeed
the casg Fatigue crack initiations can therefore be avoided or, at
least, deferred. Therefore, the stresses in Domain i eR are
evaluated next.

5 Numerical Results and Discussion

As remarked earlier, our main objective is to investigate what
kind of reinforced material can be used to reduce the tensile hoop
stress concentration at the rivet hole boundary eriR. For illus-
trative purposes, only the plane-stress condition is considered in
our numerical calculations given in Figs. 3—8. In addition, since
the range of Poisson’s ratio is relatively small comparing to the
range of stiffness, we have assumegd- v,=r3=0.25 in all our
calculations.

For steel structures, both the connecting plates and the rivets
are made of steel. Therefore, we have&et {, in the numerical
calculations given in Figs. 3-5. Figure 3 plots the normalized
hoop stressr,,(7R/P) against the angular coordinafedefined
in Fig. 1 for various values of(=¢{;=¢,) with p=0.25. For
{=5.5(i.e., the reinforced material is about five times stiffer than
the plane and rivegt the tensile stress drops to becoming negli-
gible for all values of¢p between—=/2 and#/2. A more refined
calculation yields an optimum value of 5.35 should be used. It
means that we can choose a reinforced material such that the hoop
stress can be significantly reduced. However, whduarther in-
creases, tensile hoop stress develops again but at the opposite side
of the hole(i.e., at¢p=—n/2). Thus, an optimum value of stiffness
ratio must be selected. This result provides a new theoretical basis
for designing an efficient reinforced hole. Figures 4 and 5 show
that the normalized radial stress,(7wR/P) and shear stress
o, ¢(mRIP) decreases slightly and increases with the increase in
¢, respectively. But, the increases in the magnitude of the normal-
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Fig. 2 Six special cases of the problem showed in Fig. 1

ized shear stress is about 23 percentfancreasing from 2.5 to {,/{, is allowed to vary in Fig. 6 forf;=2.5 andp=0.25. In

5.5 which is considered insignificant comparing to the drastic drgqarticular, Fig. 6 plots the normalized hoop stresg(7R/P)

in the hoop stress shown in Fig. 3. againste for various values of; /{,. The hoop stress in general
As considered by Ho and Chg{23,41), different materials drops with the increase df, /{,, but the drop is relatively small

may also be used for the circular inclusion and the plane. Thusimparing to the effect of reinforced material shown in Fig. 3. In

0.10

0.05

0.00

Gee(ﬂiR/ P)

-0.05

-0.10
¢ (degree)
Fig. 3 The normalized hoop stress o yy(mR/P) against ¢ on

r= R for various stiffness ratio ¢, ={,={¢ under the plane stress
condition with  »;=v,=v3=0.25, and p=0.25

1.0
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=3.5
05 £=5.5
{=8.5
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eé/ 0.0 ! ! 1 1
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-1.0
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Fig. 4 The normalized normal stress ¢, (7R/P) against ¢ on
r= R for various stiffness ratio ¢, ={,={¢ under the plane stress
condition with  v;=w,=v3;=0.25, and p=0.25
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Fig. 5 The normalized shear stress

r= R for various stiffness ratio
condition with

o,¢(wRIP) against ¢ on

&1={_>,=¢ under the plane stress

v,=v,=v3=0.25, and p=0.25

0.10
&i/6=0.5
Ci/&=1.0
0.05 C1/8=2.0
C1/E=4.0
&
% 000 ! . . .
N
& 90 -60 -30 0 30 60 P
-0.05 -
-0.10
¢ (degree)

Fig. 6 The normalized hoop stress
r=R for various ¢&,/&, with v,=v,=v3=0.25, p=0.25 and ¢,

=25

o99(7wRIP) against ¢ on
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0.032 fectly to a reinforced hole in the plane. The inclusion is assumed

p=0.00 being bonded perfectly to the elastic plane through a reinforced

0.8 ring. The circular inclusion, the reinforced ring and the plane can

0.016 | 0.50 be made of different materials. In contrast to most of the previous
02 studies, the rivet force is applied through a uniformly distributed

body force on the inclusion instead of assuming a point force at

the center of the inclusion. For the stiffness ratio between the

30 60 % reinforced material and the plane equal to or larger than one

(£=1), the tensile hoop stress at the hole boundary increases ini-

tially with ¢, achieves a minimum valu&lose to zerp at an

optimum value of, and increases again with further increasé.in

Whereas, both the shear and radial stresses are relatively insensi-

tive to the changing values d@f Thus, the tensile hoop stress can

be reduced to becoming negligibleery close to zerpif an ap-

o (degree) propriate stiffness is assigned to the reinforced ring, which is

stiffer than the plane. We also found that the tensile hoop stress in

Fig. 7 The normalized hoop stress o ,4(@R/P) against ¢ on general decreases with the increase in stiffness of the inclusion. In

r=R for various p with »,=v,=v;=0.25, and {;=¢,=5.35 addition, for a fixed stiffness rati¢y an optimum thickness of the
ring can be determined such that the magnitude of the tensile hoop
stress is further reduced. In short, we have illustrated that a new

addition, we have also plotted the radial and shear stresses vef§fROunity exists to reduce tensile hoop stress at the hole bound-

£11¢,. The shapes of these curves are similar to those givenafy of the elastic plane by choosing the appropriate material for

Figs. 4-5, and thus they will not be given here. We found that tﬁge reinforcement and the appropriate thickness of the reinforced

radial stress is basically independent of the valué,dfZ, while ring.

the normalized shear stress increases only slightly wwith{, .

In addition to the choice of material for the ring, we can also

select the thickness of the rir@omain 11l in Fig. 1). Figure 7 Acknowledgment
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On Bridgman’s Stress Solution for
a Tensile Neck Applied to
a.vaiente | AXiSymmetrical Blunt Notched

Departamento de Ciencia de Materiales, -
Universidad Politécnica de Madrid, T B
E.T.S. Ingenieros de Caminos, e n s I 0 n a rs
Ciudad Universitaria s/n,

28040 Madrid, Spain The displacement field at the minimum cross section of an axisymmetrical notched tensile
bar is analytically related to the notch root radius for large geometry changes of the
notch profile. This relationship is used to complete Bridgman’s formula for the tensile
load of a tensile necking in order to predict the entire load-minimum diameter curve of an
axisymmetrical blunt notched bar under tension. A particular case is solved by a finite
element modeling to check the theoretical results derived at different stages of the
analysis. [DOI: 10.1115/1.1360689

1 Introduction As a consequence, a considerable amount of investigation on

ductile steels has been conducted using circumferentially notched

lgglindrical tension specimens in conjunction with Bridgman'’s for-
ulas, and research works have been reported relating the stress

The stress and strain distributions derived by Bridgrih2]
for the neck of a tensile round bar are found quite often in boo
and treatises on plasticity. This is largely due to the interest of t . - .
subject, but in part it is also due to the intrinsic value of th ate to the fracture mechanisfi)), determining experimentally

analysis since few problems of plasticity can offer a solution a}a{s’nedln?:gig(t:iﬁ oiﬁgeustr:rszggﬁx;ﬂ% ofpa(t:ltwfr;r?gltjurﬁ &%ﬁ)n
elegant as Bridgman'’s. It should be noted that in spite of the fact P 9 pp 9 ’

hat th neck development s & nonlinear problem oving lo HEPSTL VTS 10310 Wi chetiierently Roiched indren
plastic behavior of the material and the large geometry changﬁ,I P 9

S . : ; L
Bridgman arrived at simple formulas, analytically derived, for tha ?e:%fglqggﬁ)ﬁ?&ggﬁzggb O;:;%Erigg?rigtisnfgslui??:clznlisig- as
stress distribution across the minimum cross section. This distfi- ’ 9 P

SO . . : mented with finite element calculatiofisl1,12)).
bution is given as a function of the tensile load acting on the bar, | . , . X . . .
Bridgman’s solution was derived for a necking with a given

g:eitgerglgtdlameter, and the radius of curvature of the neck prOfB?ofile, so it cannot be applied to notched specimens that have

Bridgman’s work on tensile necking has given rise to sever?f(pe”enced large geometry changes unless the shape of the de-

contributions on the same subject. Soon after Bridgman, Davide rmed notch be known. This paper shows that the notch geom-

kov and Spiridonov43] proposed a similar analysis with quanti-e ry changgs suitable for the application. of Bridgman’s fo'rmulas
tative differences in some of the assumptions. Subsequently, n be predicted from the first hypothesis assumed by Bridgman.

plan{ ] extende Brcman'sanlyssbeyond e minma crof 01N 10 1S Vpethess, wich < based o xperimentl v
section and was able to predict the form of the neck profile fro 9 y )

the same parameters as those of Bridgman. Jones, Gilis, inimum cross section of the necking. The prediction of the ge-

Shalaby{5] used the method of Kaplan to obtain a more complet%me'[ry changes requires an equation previously derived .in the
solution, and Eisenberg and Yei6] generalized Bridgman's paper which determines the notch root radihe curvature radius

analysis for orthotropic bars with the longitudinal axis parallel t@i mg rﬁﬁ?ﬂﬂﬁ“ﬁ@gg‘;g%ﬁh\;\?ﬂ gThEQeedIlfgtliicnegen;r?iilﬂar-
two planes of orthotropy. : q p

Several interesting consequences can be drawn from Brid ed for the displacement field corresponding to a uniform axial

man’s results, those referring to the triaxiality of the stress state fain rate, a b|un|yoca| relatlon results between th? notch root
the neck being worthy of mention: His solution ascertains that tﬁ@d!us and the radius of the minimum cross seciomnimum
stress state is no longer uniaxial when the neck begins to form,rzftd'us' L . -
shows that the triaxiality is maximum at the axis of the bar; and jt On¢€ the notch root radius is given as a function of the mini-
predicts the corresponding value as a function of the main vaffium radlu_s, Bridgman’s fprmula for the load that produces a
ables(the tensile load, the neck diameter, and the radius of c(fflYén necking can be applied to a notched specimen so that the
vature of the neck Perhaps the idea of producing controlled trii02d Sustained by the specimen becomes dependent on only one
axial stress states by means of artificial necks was suggested‘ffifmatical variable, the minimum radius. A second hypothesis

these conclusions, and hence that of assimilating a circumferenfld um_edliby Br_ldg;nan IS :nvlolved |fn L"s forrEyIa anﬂ.Cﬁncerns the
notch machined on a cylindrical tension specimen to the tensiRPStatic lines in the axial plane of the necking, which were ap-

necking of a round bar, once general yielding has taken placeRfPXximated by circumferences in the neighborhood of the mini-
the notched specimen. mum cross section. When Bridgman’s formula is employed in that

way, it transforms into a theoretical prediction of the load-
Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF mhlnm;um radlusb.cl.urvle 0:; abnOtChed SFeCImin' WhpS? mac);.lm.um’
MECHANICAL ENGINEERS for publication in the ASME GURNAL OF AppLiEp € plastic instability load, becomes also a theoretical prediction.
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, Oct.  All these theoretical predictions are developed in the paper and
15, 1998; final revision, Nov. 29, 2000. Associate Editor: K. T. Ramesh. Discussigfre used for the assessment of Bridgman’s solution as an approxi-
on the paper should be addressed to the Editor, Professor Lewis T. Wheeler, De < : : : : :
ment of Mechanical Engineering, University of Houston, Houston, TX 77204-479@?{.5t|0n to descrlb.e the plaStIC behavior of tensile roqnd Specimens
and will be accepted until four months after final publication of the paper itself in th‘é"th C"'Qumferent'al blunt nPtCheS- The asseslsment IS basgd onthe
ASME JOURNAL OF APPLIED MECHANICS. comparison of the theoretical predictions with the numerical re-
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Load

Fig. 1 Axisymmetrical motion of a continuous medium: mate-
rial line coplanar with the axis

sults obtained in a finite element modeling of the tensile loading
process of a circumferentially notched specimen.

e 8
v o
ey, ass®

o aev
hLLT YT ferretitiliy

2 Evolution of the Notch Root Radius

In a tensile round bar of isotropic and homogeneous material, \ __/

the necking development, and hence the deformation of a circum-
l Load

ferential notch, consists of geometry changes maintaining the
axial symmetry about the longitudinal axis of the bar, as well as
the mirror symmetry to the plane of the minimum cross section
area. No other condition is considered in the analysis, but the
classical theory of plasticitythe Von Mises yield criterion with
isotropic hardening and the Prandtl-Reuss equatianspplied.
The theoretical basis of an equation for the evolution of the notch
profile radius is the condition of the notch profile of being simulimplies only radial and axial components independent,of, ,
taneously a traction-free contour and a material line. The latt@Rdv,, which leads to the following expression of curl

Fig. 2 Deformed and undeformed notch profiles

means that it is formed by the same material points at all time, 1(av. v
which is a consequence of being the intersection of a material curv=2we, with w=~- . _Z) 2)
surface(the bar surfacewith a plane(an axial plang that the 2\ 0z or
material points can not |eave,_ due to the axisymmetry. By virtue of these particular conditions, the directional derivative
The starting point is the kinematical equation derived in thgf curl v alongI” may be put in the form
Appendix for the time derivative of the curvature of the material
lines of a continuous medium in motion. In this equation, the time 1 d(curlv) b= I(wey) —e)=— 99 _ _ orade-t 3
rate k of the curvature at a given point of a material line is ex- 2 s T 9s 0= T g T 9rade
pressed as a function of the strain rate tensor field, the velocit}qd Ea.(1) b
field, and the curvature and the torsiorr of the material line at and Ed.(1) becomes
the given point 1 9yn
. K== —gradew-t—gk. (4)
10y, 1 . 1 d(curlv) ) 2 Js
K=5———5TYpt 35— b—g«. 1) . .
2 s 2 2 Js Furthermore, the gradient af may be expressed as a function of

the strain rate field by applying the formulas for this operator in
cylindrical coordinates and then eliminating the derivatives of the

tangent(t), principal normaln) and binormalb) directions of the velocity components through the expressions which relate the

line, the directional derivatives of these components in the tang%n'ia'” rates to the velocity field, also in cylindrical coordinates.
direction of the line ¢/s), and the curl of the velocity field. enoting the radial and axial unit vectors of the cylindrical coor-
For a material linel’ coplanar with the axis of revolution in an dinates byg; ande,, the result is
axisymmetrical motion of the continuous medidRig. 1), Eq. (1) g, 13y, 19y, d&,

can be simplified. First, since the material line remains plane, its grade(E— 3o ) +<§ i W)ez. (5)
torsion 7 vanishes. Further, if the axis of revolution is chosen as

the z-axis of a cylindrical coordinate system#d,z and the princi- On applying Eq.(4) to the deformed notch profilE (Fig. 2), the

pal normal is the tangent rotated 90 degrees counterclockwistear strain raté,, remains null alond’, and as a consequence
(Fig. 1, the binormalb coincides with the negative of the unitits derivative in the tangent direction vanishes. This is due to the
base vectoe,. Finally, the axisymmetry of the velocity field absence of shear stresses acting on the notch profile, which im-

The amounts involved in Eql) are the components;, ¥;,, and
Yo Of the strain rate tensgnormal and shear strain rajens the
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plies the absence of the corresponding shear strain rates according rodr

to the Prandtl-Reuss equations. Then for the notch profilg4q.

becomes

k=—gradw-t—&x.

(6)

At the root of the notcltipoint A of Fig. 2, where the value of the

curvature is denoted byc(c=—1/R) and its initial value by
Co(Co=—1/Ry), the direction of the tangent tb coincides with

d r r
1=’z — —=ez—A=¢,=—In Ar_ (16)
0

rodrg o

whereA = A(ry) is the radial stretch ratidr/dry along this axis.
Then

that of the axis of axisymmetry, so the vectand the strain rate and at point A

g, coincide withe, and ¢,, respectively. Then, substitution of

these particular conditions besides E%). into Eq. (6) yields

1 0¥,

) de,
=272

o (7)

—&,C.

A form of this equation involving still fewer variables can be
obtained. According to the axisymmetry, a principal direction of

the strain rate tensor igy, and the other twog andeg,, are

contained in the axial plane. By applying the Mohr’s circle pro
cedure, the strain ratg,, can be expressed as a function of th

strain rates, g in the directionsg ande, and of the anglep
between the radial direction armgl, so that

Yrz= (&= &y)sin 2¢ (8)
Yrz _ (e —gy)

N
— 7 Sen2p+2(&—&y) ——cos 2.

3z 9)

de, 1dA 1dr 1 1dA A 1
— = —— 4+ —=—————4+— (17)
arg Adrg rdrg rg Adrg r 1y
de, NN 1 18
aore N a ag (18)

\' being the value of the derivativiA/dr at this point, namely,
atro=agy. Thus, Eq.(15) becomes
R0_1+R0)\’ Rofag 1
R N A% Tagla A/

Therefore, the notch root radidis determined by three values

(19)

%Iependent on the displacement field of the minimum cross section

of the notch: the radiua of the section and the valuésand\’
taken at the notch root by the radial stretch ratio and its derivative
along ther-axis. Equation(19) is a kinematical relationship that
allows the notch root radius to be found from the single function
of the distance to the center of the cross section, to which that
displacement field reduces.

Since at the root of the notch the axial and radial directions are
principal directions of stress and strain rate, the conditions to Be Application to Bridgman’s Solution

particularized in Eq(4) for point A are
o de
¢72 9z

Thus, for the root of the notch, E¢9) and subsequently Eq7)
become

=C .8|:'82 .8||:£.-3r.

9y, .
= 2 éc (10
08
t=—g,C+ (9—rz (11)

An undeformed elemental lengtir lying on ther-axis trans-
forms intodr after deformation and remains on th&xis since

this axis moves along itself due to the axial and mirror symmetry.

Let N be the value of the ratidr/drq at point A. Hence, at this
point

. N 9e, Lok, 1[de,)
I i b

TN or  Noarg N (12)

and Eq.(11) transforms into
L A N 1/[de,\" 13
=N N g (13)

which, after some rearrangement, can be integrated to yield

de,
AC— — =cte=¢,

e 14)

The first specific hypothesis of Bridgman’s analysis determines
the displacement field at the minimum cross section of the tensile
neck. Therefore, when Bridgman'’s solution is applied to a tensile
notched specimen, the result of particularizing EtP) for this
displacement field is being assumed as valid for the specimen
and it provides a means to check such application of Bridgman'’s
solution.

According to experimental evidence, Bridgman assumed the
axial strain rates, to be uniform across the minimum cross sec-
tion, which leads to the uniformity of the overall strain rate and
strain states, including the standard equivalent plastic skrgin
Indeed, ife, is not dependent on, from the conditions of axi-
symmetry and incompressibility it follows that

. . 1. 1, a
br=bg=— 5 e 5 Ep=o (20)
1 1
s,:sﬁz—zsz——zsp:ma—o (22)
a A dr a -
— =pefi= — = — =
Mo €= a (o) drg  ag (22)
A _a ,_dA B 23
A= (aO)_a_o )\_d_roa_ (23)
0

Particularizing these values ®fand\’ in Eq. (19), it simplifies

R a

R (24)

where the constant has been determined from the undeformed

specimen, for which the curvature of the notcltds A is equal to
unity ande, vanishes. In terms of the notch root radRsand its
initial value Ry (c=—1/R, ¢cp=—1/R,, Fig. 2:

Ry, 1 Ryde,

RN ()

i.e., the notch root radius and the minimum specimen radius vary
proportionally during the deformation process. This must be sat-
isfied by the tensile notched specimens for which Bridgman'’s so-
lution is applicable.

The second specific hypothesis of Bridgman’s analysis was as-
sumed in the development of the formula that gives the tensile
load as a function of the neck geometry and the stress-strain curve

If the elastic compressibility is neglected, incompressibility folef the material. The development of the formula is next summa-

lows, and for the points of the-axis it takes the form
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The stresses, , o,, ando, are the principal ones at the mini- Table 1

Curvature radii and notch factors

mum cross section due to the axial and mirror symmetry, ard

accordingly ther-axis is an isostatic line of the plane. These Radiusp Notch Factor(a,/Ry)
conditions give rise to a particular equilibrium equation along th@ridgman aR a2 r 2R, a
r-axis that can be obtained from the general equilibrium equation Tt a3 (1+ E) In (1+ 230)
along the isostatic lines of the axial planes for axisymmetry. L}, :qenkov :
o, anday, be the principal stresses contained in the axial plane, 4ng I 142
the distance along the isostatic line tangent{oR, the curvature Spiridonova R 4R,
radius along the isostatic line tangent &g, and ¢ the angle Eisenberg arR a? Ry ay
between the direction af, and ther-axis. The general equation is?{f;?] i Phabas Zo) In {1+ Eo)
do, oy—oy 01— 0, 0 o5
+ Cosp=
and for ther-axis where
do, o,—0, o,—0y a, 1 x2dx
+ =0, 26 Fl22 =14 | —. 32
dr p r 20 Ro 0, 20 (32)
. . . o X, =
p being the curvature radius of the isostatic lines normal to the Ro

r-axis at the points of intersection with it. Furthermore, the equ

ity O.f the stresses, anda, arises from that c_)f the corres_pondingfactor) this relation between the tensile loRdand the radius is
e e s s o oo el o a1 Ut round bar o el acias made rom e

q . ' o Y same material as the circumferentially notched round specimen.
to |sgtrop|c_harden|ngsuch a property implies a b|un|voca! rela'Therefore, these two relations can be predicted one from another
tion (sTo_ t':\;‘ipl% gﬁgvgf?h?;ﬁ isstrﬁ?]ﬁ‘;rr]g tsgeigclﬁg%g]n&ﬂﬁzué straﬁr} dividing or multiplying the tensile load by the notch factor and
?2')6) becomes a- considering the radiua as that of an unnotched bar or as that of

the minimum cross section of a notched one. In particular, the

o ) - a maximum loads of these two tensile bars are the same except for

+—=0 with o=H|2 In; (27)  this factor, whereupon the load of plastic collafsgof a circum-

a\klith the exception of the factoF(ay/R,) (henceforth, notch

do,

dr—p ferentially notched round specimen should be given by
and can be integrated with the boundary conditie=c at r a
= i = i I I 0
a (sinceo, =0 at this point to glzzr P,= WangF(R_o)’ (33)
GZ—F< l+f —) (28) R, being the tensile strength of the material. Another important
r P consequence of Eq31) is the possibility of determining the

The tensile load® sustained by the specimen is the resultant forcdfess-strain curve=H(z,,) by testing notched round specimens
of the axial stresses, acting on any cross section. Théhgan be and recording the tensile load as a funct®s P(a) of the radius
expressed as a function of the variables introduced up to now 8fythe minimum cross section. The functiéf(-) would be
integrating the value given by E@28) over the minimum cross P(age ?)

section H(x)= ————+—
_ =)

male *F| —

0 R

a a adr
P=J 0'227TXdX=f E(1+J — | 2mwxdx 0
0 0 p
determining the stress-strain curve because it does not produce a

2 (a1 (r
=7ra25( 1+ —zf [—f xdx

a“ Jo|p Jo

1 ar? geometrical configuration change as radical as the necking of a
_ 7Taz;( 1+ = r—dr) smooth specimen.

a

(34)

and would be valid for a larger range of strain than that provided
by a standard tensile test, since the plastic instability of a notched
dr) specimen would not mean the end of the test for the purpose of

o P Table 1 shows different functions giving the curvature radius of
the isostatic lines along theaxis according to Eq 30, as well as
_ 2_< fl a the corresponding notch factors as calculated from Eq. 32.
=mqa‘o| 1+ ;
" 4 hvoothesis 1 |O 4 by Brid ﬁ Finite Element Solution
e second hypothesis formulated by Bridgman states the . .
variation of the ‘curvature radiup along the r-axis. Apart As prewc:asly stlg?jt_ed, Eqéz.ﬁ)' (32), and§3t3_) pr?wdte su_||op%r|t .
from Bridgman, other researcher$3,6]) have proposed or 0 assess the validity of Bridgman's solution for tensile blunt
suggested alternative hypotheses, but they all fall under the g8fiched specimens by checking them with numerical or experi-
eral formulation mental results. The numerl_ca_l res_,ults were preft_arred to the experi-
mental ones due to the difficulties of performing the measure-
ments involved in Eqs(24) and (31), since there are no simple
. (30) methods to measure radii of curvature in a contour or tensile
stress-strain curves beyond the tensile strength.
As a consequence, the integral of the right-hand side of(Z3). A large number of finite element solutions have been computed
depends only on the ratia/R, which according to relation Eq. for elastic-plastic circumferentially notched tensile round bars
(24) holds constant during the deformation; so that the expressign3,14). In general the results approach Bridgman’s solution as
of the tensile load transforms into the sharpness of the notch profile decreases, but the reported de-
) tails do not allow Eq.(24) to be checked, so a finite element

(31) solution was specifically obtained for this purpose. The length of
the tensile bar numerically modeled, the radius of the gross

r\2 (r
—|al=
a a

) : (29)

r R

p=af a'a

=N

P=ma’cF =ma’H

Ro

a, a,
2|n_°)p(_°
0 a
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cross section and the radius of the notch profile were 9.82, 1.23 14
and 0.90 times the radiug, of the minimum cross section. 1
An elastoplastic strain-hardening material obeying the isotropic
Von Mises yield criterion and the Prandlt-Reuss constitutive
equations was assumed. The mechanical properties of this mate
rial, taken from an A533 vessel steel, are 200 GFaung’'s .1
modulug, 0.3 (Poisson’ rati¢, 470 MPa(0.2 percent yield stregs 10 E
andz,= (a/00)®° with oy=900 MPa(Ramberg-Osgood’s strain
hardening curve An axisymmetrical mesh of 431 nodes and 393
eight-node and six-node isoparametric elements, moderately re
fined at the crack profile and at tiheaxis (with nine nodes on the
former and 14 on the latterwas used for modeling a quarter of ¢ %
the bar, as shown in Fig. 3. According to symmetry, the nodes on
ther andz-axis were constrained to move along their respective
axis. Loading was simulated by imposing a single value of the
displacement parallel to theaxis on all the nodes on the base of
the bar, this displacement being gradually increased until the
maximum equivalent plastic strain in the bar roughly reached al0 5
value of 1, which occurred well beyond maximum load. The nu- 3
merical computation was made with a commercial finite element
code allowing large geometry changes. The Ramberg-Osgood’:
curve was piecewise implemented in the code for a plastic strain
range from 0 to 1.5. 10°%
Special attention was paid to the numerical results concernec
with Egs.(22) and(24) in order to assess the accuracy of Bridg-
man’s solution complemented with E(L9) for axisymmetrical
notched bars. Figures 4, 5, and 6 are intended for this purpose. li
Fig. 4 the displacements of the nodes on thexis are plotted

in nondimensional and absolute values as a function of their initial10”

o
©
>:: ..":
N o > o'.‘
St O O O O .C.
O O
P/Pm - O O A o ...Q‘
O o O .0 <)
O
0.620 RS i ..o:‘s'
0.830 o o O
O O o
i 0970 07 O e,
] PL 1.000 T _o Woailee
0.990 O O ™ o
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e O (r O
1 g
O
1GY: 0760 Q
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1ER: 0.440 r OI a
0.1 1

position for a number of load levels covering elastic regime,
contained yielding, general yielding, extended yielding, plastic
instability (maximum loadl, and plastic unloading after plastic
instability.

Fig. 4 Displacements of the

r-axis nodes at different levels of
the maximum load P, . (ER: elastic regime; CY: contained
yielding; GY: general yielding; PI: plastic instability )

Uniform axial displacement According to Eq.(22), with the logarithmic scales used in

491 a,

+ Pl

- 2,
1.23 3, .

Fig. 3 Notch profile and finite element mesh used for the nu-
merical solution
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Fig. 4, the points from a same load level should lie on parallel
straight lines of slope unity. As expected, in the elastic regimen
the numerical displacements near the notch profile fail to follow
this trend. The deviation increases as plasticity extends over the
notch sections and is maximum at general yielding, but it de-
creases as plastic instability approaches and continues decreasing

0.6

0.3

0.6 0.7 0.8 0.9 1 1.1 1.2

Fig. 5 Deformed notch profiles at different load levels (P is
the maximum load )
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Fig. 6 Notch root radius as a function of deformation Fig. 7 Tensile load as a function of deformation

with plastic unloading until practically vanishing. With regard td=d. (19) with Bridgman’s solution, but whereas the first is based
Eqg. (24), the notch profile in the neighborhood of the notch rog@nly on the linear displacement distribution assumed at the mini-
has been plotted at different load levels in Fig. 5 from the dighum cross section of the bar, the second comes also from the
placements of four nodes lying on it. The corresponding values @firvatures assumed for the isostatic lines along thgis. So the

the notch root radiu® were determined as that of the circumfererrors that the deviations from these two assumptions produce on
ence symmetric to theaxis which passes through the node on ththe notch root radiuga local effect and on the tensile loath
notch root and the nearest on the notch profile. global effect will be assessed.

The resultingR/R, values are plotted in Fig. 6 as a function of For large plastic deformation, the linear displacement distribu-
the minimum area expressed by the ratia,. The exact solution tion is a good approximation, as shown by the finite element cal-
for incompressible material provided by EQ.9) allows the de- culated displacement fiel@Fig. 4). According to the absence of
viation from Eq.(24) to be explained. For small strain, the hoogpleviations, in this regime no disagreement should be expected
and radial stretchea/a, and\ hardly differ from unity, so Eq. between the theoretical prediction of the notch root radius given
(19) predicts no significant difference between the r&lindR, by Eq. (24) and the finite element results; indeed no significant
unless a strain gradient giving rise to a valuedf not much disparity is detected, since the slight scatter of Fig. 6 is attribut-
below 1R, be produced at the notch root. As the displacemen@@'e to the numerical errors arising from the finite discretization of
plotted in Fig. 4 indicate, this requires a notch profile very mucthe bar. On the contrary, in the previous elastic and elastic-plastic
sharper than the finite element modeled one, so that the changéegimes(roughly up to plastic instabilitythe displacements devi-
curvature cannot precede that of the overall dimensions. Sireé€ from the linear distribution near the notch rgig. 4). This
large deformations initiate at the early stages of plastic instabilithas no effect on the notch root radius for small strains, as already
Eq. (24) is verified until then simply because there is no geometstated, and only at the transition to large deformatitwe begin-
change, even though the radial displacements do not satisfy 8itg of plastic instability, do the data in Fig. 6 indicate some
tirely Eqg. (22) (Fig. 4. When the large geometry changes delisagreement between the theoretical results and the numerical
occur, the notch profile is deformed according to E2R) as Ones. ) ) _
shown in Fig. 6 by the points clustered around the straight lineAs far as the tensile load is concerned, Fig. 7 shows good
representing this equation. This is in agreement with the trend @greement between the values given by the finite element model-
the radial displacements to fulfill Eq22) as plastic unloading ing and Eq(31) in the range covering general and extended yield-
increasegFig. 4). The maximum deviation from Eq24) takes ing up to plastic instability. The two results differ from maximum.
place just before plastic instability, when strains are already Iarq@t,'ﬂd. i.e., when the notch root radius largely changes. The tensile
but the radial displacements still differ from E@2) (Fig. 4). oad being affected, the discrepancy is a global effect and cannot

Finally, the tensile load obtained by the finite element modelirge due the displacement field at the minimum cross section, since
is plotted in Fig. 7 against the logarithmic strain 2dga). Equa- in this range these displacements deviate so little from the linear
tion (31) is also plotted in Fig. 7 with Bridgman’s notch factor ofdistribution as to produce no local effeq. (24) is satisfied. So,
Table 1. The unit load used in the plotsRg=maZo,, namely, It can only be attributed to the inaccuracy of the curvatures

the area of the minimum cross section multiplied by the stre@gdopted fpr the_ isostatic lines. The alternatives to Bridgman'’s cur-
constanto, of the strain hardening curve. vatures given in Table 1 would not improve the agreement, be-

cause they would only modify the notch factor and would produce
5 Di . a displacement of the curve in Fig. 7 parallel to the ordinate axis.
ISCussion In fact, the curvatures derived by Bridgman seem to be an excel-
The adequacy of Bridgman’s solution for axisymmetricalent solution of the type defined by E¢R9), since this can be
notched tensile bars will be discussed by comparing the finiteerived not only from the circumferences assumed by Bridgman
element solution of Section 4 with the main theoretical predictionis be the family of isostatic lines to which the axi®elongs, but
derived in Section 3, which give the notch root radi&s). (24)) also from other families of curves as ellipses or parabolas. A
and the tensile loaEqg. (31)) as a function of the specimen mini- plausible explanation of the inaccuracy arises when (24) is
mum diameter. The two results are a consequence of combinspstituted into Eq29) and it becomes apparent that the assumed
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curvature distribution is the same through the deformation proces
but a scale factor. Therefore, as a consequence of 2, the
root notch radiuk cannot account for the influence of the ratio
alag on the curvature distribution, so this dependence must b¢
explicitly incorporated into Eq(30).

The failure of Eq(31) to predict the tensile load beyond plastic
instability does not allow an unbounded range of the stress-strai
curve to be measured by applying E®4) to tests carried out
with axisymmetrical blunt notched specimens. Nevertheless, Fig
7 indicates that the tensile strength and even the yield stress mig|
be determined by this procedure. Indeed, reported tensile tes
covering a wide range of these properties and performed with twc
types of specimens provide experimental support for this possibil
ity ([15)).

6 Concluding Remarks

A theoretical development was carried out aimed at deriving
relationship between the notch root radius of an axisymmetrica
notched tensile bar and the displacement field at the minimun
cross section for large geometry changes of the notch profile an
for elastic-plastic incompressible material. Bridgman'’s displace-
ment and stress solution for a tensile neck was examined in comr
bination with that relationship with regard to their application to
axisymmetrical blunt notched bars under tension, and this allowe:
the entire load-minimum diameter curve of the bar to be pre-
dicted. A finite element solution of a particular case was com- Fig. 8 Vectors concerning the motion of a material line
puted for comparison, and different steps of the analytical devel-
opment were checked, the following conclusions being drawn as
to the effects produced by the inaccuracy of Bridgman'’s solutig¥@n be exchanged. Legtbe the vector amount to be differentiated
for the notched bar on the predicted notch root radius and tens¥@d £, the normal strain rate in the direction tangenttogiven
load: no significant error of the former was observed over thbate’tis the ratiods/ds; of the deformed and undeformed length
entire range of plastic deformatidsmall and largg but signifi- of an elemental arc of the material line, such a rule would be

cant differences were found in the latter after plastic instability. (0q)A_ 1 g ) 1/aq) & dq
“lettgs, ettlas.] et gs.
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derivatives, using the Frenet equations and applying(E§). to
. the tangent vectoar, the following expression for the time raie
Appendix of the curvature is obtained:
The aim of this section is to derive a kinematical equation re-
lating the curvature of a deformed material line to the velocity
field in a body which is being subjected to deformation. The equa-

tion is obtained for the general case and particularized for that of . . . .
axisymmetry in Section 2 of the main text. A further development of this expression requires an explicit

Let I be the curve which represents the deformed material lif@m to be found of the time derivative of the tangent vector. This
at present time. The position vector of a material point,is is ¢an be done by applying EGAS) to the position vector, decom-
the velocity field,s is the distance alon§, « and 7 are the cur- POSIng subsequently the velocity gradient into the sum of its sym-
vature and the torsion df, andt, n, andb are the vectors of an metric (the strain rate ten_sw) and skew par(whlch is equn_/alent
orthonormal basis in the tangent, principal normal, and binorm{§ the vector product with 1/2 cwl as first factoy, and finally
directions ofl" (Fig. 8. All these quantities and their directionalntroducing the shear strain ratgg, and yy, for the tangent, prin-

_ at
K:n-(Kn)':n-(—

: A ot at
75 =Nn-|——¢&—|=n- ——¢gk (AB)

Js Js Js

derivatives alond" are related by the Frenet equations: cipal normal, and binormal directions. All this yields
ar - ar)'iar L ar v e AWt bt
st (A1) | Gs) TasTBGs T as BT (grat=
at 1 Y 1. 1
gan (A2) =gt+ E(curlv)xt—stt—zymn+§ytbb+ E(curlv)xt.
n (A7)
g~ Kt (A3)  The differentiation of this expression and the subsequent use of
the Frenet equations provide the directional derivative of the time
db derivative of the tangent vector. Then, its projection onto the nor-
it (A4)  mal vectorn can be found and substituted into Eq A6, which
finally gives:
In order to introduce the velocity field, a rule is required by .
which the order of differentiation between the directional deriva- P } 9% ET- n E aeurlv) b—i.k (A8)
tive and the material time on@lenoted by a superimposed pot 2 9s 2 T3 g e
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Cavitation and Mushrooming
in Attack of Thick Targets
s 1 by Deforming Rods

Aerospace Engineering,

Sejong Uﬂi}{efSityv This paper analyzes the cavitation and mushrooming phenomena occurring in a metal

. 98 Kwangjin-Gu, target during the high-speed penetration by a deforming rod. It is motivated by the fact
Kunja-Dong, Seoul 143747, Korea that two mechanisms are involved in the formation of cavity by a deforming rod. First, the
e-mail: mlee@sejong.ac.kr flow of the deformed rod products exerting radial stress on the target opens a cavity

(mushrooming). Second, the radial inertia of the target as it flows around the head plays
another part in the formation of the cavity (cavitation). By examining the dynamics of the

flow of deformed rod products, the proposed model can estimate the extent of cavity
growth due to the mushrooming effect. Predicted results for the final cavity growth are

found to match well with the corresponding test valu¢POl: 10.1115/1.1360690

Introduction the purpose of this paper is to analyze the cavitation process oc-
yrring in a metal target during penetration by a deforming rod.

Penetration mechanics involves the behavior of materials un re analvsis includes the centrifugal force exerted by the flow of
extreme loading conditions, such as plasticity, fracture, and hg- Y g y

X ! . forming rod material, radial inertia of the target, and the
O o o o e anc e et &g of the arget. An aiymmetrc coordate system movin
. : o the constant penetration velocity is used as reference, in
target that is penetrated by high-speed projectllds)). As which the bottom of the contact surface is not moving. Some
shown in Fig. 1, Hill[3] investigated the cavitation phenomenaassum tions are made, many of which are motivated b ?He results
produced by anondeformingprojectile traveling through an infi- f Pt t d o yl imulati y
nite medium(any ductile metalat constant velocity. If the cavity of experiments and numerical simulations.

radius is\a, he provides the following equation:
Observations and Assumptions
P CgpU? P

N=—=1+ 5 1) It is worth noting that for hypervelocity penetration the final
P P cavity diameter can be two to three times larger than the projectile
diameter. This is due to the fact that two distinct mechanisms are

'pvolved in the radial motion of target material resulting from
ypervelocity penetration. First, the deformed rod elements, ac-

where a is the radius of a rigid projectileR is the resistance
pressurep can be interpreted as the theoretical work per un

volume to make cylindrical or spherical holgd]), p is the target . - . .
density, Cy is the )éirag coefficignt dependi%g])orllj the headgshap%ompanled by a very high stress level in the target material, play

andU is the penetration velocity. For a rigid body penetration, th@ dominant role in opening the cavitiushrooming This is only

impact velocityV is equal to the penetration velocity. AccordingObserved during hypervelocity penetratidif]). Second, the tar-

. . - t inertia is responsible for further cavity formation until the
to Hill [3], the dependence @fon headshape is almost negllglblege X e

o : ; . ; rget strength forces it to come to rdshvitation. The term
and it is evidenced by quas-static experiments with long pur]Chéﬁ'gvitation”gi;s borrowed from Hill's WOI’|€((([3]) Whicr)h deals with
For the static test where there is no cavitation, the resistance Iqﬁg attack of thick targets by nondeforming broiectiles. in which
is pA, WhergA is the projected area of thg prqjectile. . v the cavitation effgct s i)r/westi ated g proj ’

More pertinent to the present investigation is the analysis of tﬁg‘lyhe theory must account for tﬁe prévious o mechanisms

hypervelocity penetration, in which the projectile itself deform hdeed sinc?—:'/ the coupling contribution of the two effects, if an '
This is usually applicable to military terminal ballistics. Walter: ' piing ' Y,

and Scot{5] formulated a theory of the cavity growth rate undeEOUld not be discerned from the available data, it is not clear how
ballistic impact conditions. However, this model is applicable t p model the c_ou_pllng effects of t_he two mechanlsms_. This d'ﬁ'.'
Lé|ty can be eliminated by assuming that the total cavity growth is

thin plates and surface penetration/perforation where a plaa ”
stress condition is expected to exist. For a deforming rod in atta ge to the sum of the cavity growth produced by each effect

. : ; ; . _acting independently, regardless of the order of application of
of thick targets at high speed, Mill¢6] presented an engmeermgggads. In other words, the principle of superposition is used for the

description of the deforming rod front and kinematics. Witho | it wih. Iti ¢ luate the t ffoct
the presence of material strengths, however, the model is not 0 ivifji\gl?;gro - LIS now necessary (o evaluate the two elects

to predict the final cavity growth.

Although one way to analyze a detailed penetration problem is
to use computer predictions, this approach is computationally ex-
pensive. By using an analytical model, significant parameters and

how they vary over a wide velocity range can be obtained. Hence, \Z
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Mushrooming

The formation of cavity solely due to mushrooming can be
derived from Miller's analysig[6]) with the presence of target
strength. This is due to the fact that the target strength will eve
tually halt the cavity growth. The geometry of the mushroomin
process is shown in Fig. 2. The target is assumed to be se
infinite. Note that only half of the rod is displayed in the figure
The length is scaled by the radius of rod, such that the scal
radius of the rod is one. Now we focus on the dynamics of the 1/2pp(V—U)2 1/2p,U?
flow of deforming rod elements during penetration. The flow is Kl:T‘ Ky= R (6)
considered as incompressible, steady, and inviscid relative to the t t
stagnation regiorthead. The trace of the centerline of the de-Eq. (5) becomes
forming rod elements allows us to determine the cavity growth. )

Since an axisymmetric coordinate system moving at the constant ordr=— 2Ky sind 0 %
penetration velocity(U) is used as reference, the speed of the 1+K,sint e

flowing material is always\(—U) regardless o# andr. Hence, . . . .

this model is not valid for the entrance and end phases and is valjg determine the trajectory of the flowing element as a function of
for the steady-state phase. We can also obtain a time-depenoaenrlhls equation Is to _be integrated with an initial condition
model using a variable penetration velocity, if necessary. As't @l #=/2, which yields
shown in Fig. 2, we consider two contact regions between the T 2K, sing

head and target: a finite stagnation regior<r,, w/2<6<m), r(9)= \/rif —,né_da_ (8)
over which the resistant pressure equals the stagnation pressure 2 1T K sim 6

2 ' ; . .
161”5& ,/zand the domain outside of the stagnation '®J108ice the deformed rod element starts to flow frémm/2 to O,
(O<b=ml2). the numerical integration of E@8) for the domain of & #<m/2

F'FSt' consider the case when the flowing rod element remaiigs s us to determine the cavity growth () which is solely due
outside of the stagnation region. From the rod mass conservatjgny, - mushrooming. Note that if the inertia pressure had been

in a coordinate system located at the head, the nondimensional . 9 .
thickness of a flowing rod element is given by aSprommated to be 1/RU?sir? 4, there would be a simple

closed-form solution given by
1

hO)= 55 @
Note that the radius is nondimensional. The resistant pressure pro-
file exerted by the target due to inertia is assumed to I8econd, consider the case when the flowing rod element remains
1/2p,U2sin* ¢ as provided by Miller[6], where 6 is the angle inside of the stagnation region. For this region, the location of the
between the tangent direction of the centerline of the rod flow awénter of deformed rod material is expected to vary from half of
the axis of symmetry. Although the Newtonian pressurthe radiug6=), where the rod material is not initially deformed,
1/2p,U?sir? ¢ allows a simple closed-form solution it overpre-to r,(6#=/2). In order to find the initial conditiom,, by the

dicts the pressure profile. The target resistance that is equalsne reasoning with above, the pressure balance equ&n
pressure force plus target strength must balance the centrifugdl) can be written for inside of the stagnation region,

force generated by the flow of a deforming element, (V=U)2

1
(V*U)Z R+ Eth2=h(0)ppW.

=T ®3)

R(6) Equation(10) implies that the actual resistance pressure, which
whereR; is the work expended per unit volume to open a spheriloes not have angle variations, is acting on the centerline of the
cal or cylindrical cavity, which can be interpreted@ Eq. (1), rod elements. So, the stagnation pressure is always acting normal
andR(6) is the scaled local radius of curvature of the centerling the penetration direction. The existence of stagnation region
curve. There are no axial stress gradients along the centerlin#l compensate the assumption that the resistant pressure is as-
since the speed of the flowing material is always{U) regard- sumed to act normal to the centerline. By using the radius of
less of @ andr. From geometric relations, curvature and the thickness of the flowing element, [#Q) is to

1 dr be integrated fromm=0.5 atf= to r, at 6==/2 resulting in

Sing do’ ) L
Combining Egs.(2), (3), and (4) gives the differential equation ' 4 14K
describing the trajectory of a flowing element, At this point it is possible to calculate the cavity growth via Eq.
(9). However, the calculation requires the valueskpindU. For
steady-state penetration of the stagnation head, the modified ber-
noulli equation applie$[8—10])

R ! U?sin® 6= ! V-U)?si dr)~* 5
t+§Pt S 9—*§Pp( - )Sln'gﬁ )

;l;lje pressure on the left-hand side in Ef) is assumed to act
ormal to the flow at radius, wherer is the radius of the center-
e of a flowing rod element, although the resistance pressure
actually acts normal to the interface between the rod and target.
gg introducing two constants,

Ky
a =-\/ﬂ+~——————n11+2K +2 K+ K2 (9
cl 1 \/KZTKzz [ 2 2 2] ()

1 (10)
R+ EthZ sin® 6=h( 0)p,

R(6)=—

(11)

1 2 1 2
5Pp(V=U)?+ Y, =2 pUP+Ry. (12)

Y, is the pressure at which the rod begins to flow hydrodynami-
cally. It is assumed that the projectile is rigid except for an infini-

j— 1 ti i A . . . o
1 iO? L YU L~ SPa:gTZm;ng tesimally thin region near the target-projectile interface where ero-
- PUSR, sion is occurring. Then Tat@] givesU,
. ) . . V—a\yV3+2(1-a?)(R—Y,)/p;
E:gésﬁre Mushrooming and region of the target resistant U= 1=a? for a#1 (13)
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Fig. 3 The ratio of cavity growth due to mushrooming to the rod radius with
impact velocity, and the corresponding penetration velocity

Vo (R—Yp) can be achieved for deforming projectiles. When a rigid projectile
U= 5TV for a=1 (14) is moving through the ductile target, the force on projediiterk
P per unit length is put in the Poncelet form,
wherea= \p;7p,. ForY,<R;, there is a critical velocity given
by [2(R.—Y,)/p,]*? below which penetration no longer occurs. F 1 )
The projectile will however continue to erode until it comes to m:Rﬁ 5 CapU” (15)
C

rest. ForY,>R;, there is a critical velocity given by2(Y,
—R)/p]*? below which the projectile behaves as a rigid body, - o . . _
([11)). The R, value determined by the classical spherical cavith is explicit in the right-hand side of Eq15) that the first term

; . % static given by cavity expansion, and the second term is the
;x?ﬁ:sgrgensgcidﬁ(l)ﬁ(s presented by Satapathy and Blébs used drag force that comes about due to the convective inertia effects

In order to gain an insight into the influence of mushroomin 14]). Since the cavity grows fromc, {0 a final sizea due to the

on formation of the cavity, the calculated values of the cavity sizeertla effect, the energgper unit length balance equation be-
. - omes

for the penetration of a steel rod into a steel target and a tungsf:en

rod into a tungsten target are shown in Fig. 3. The remaining 1

undetermined valuesR(—Y,), used in the calculations are 2.65 = 2 2_ 2_, 2

GPa for the first case and 4.17 GPa for the second(€&3p. The 5 (M) Cap U= 7(a5"~ 86 IRy (16)

corresponding penetration velocity for the impact of tungsten rod

into tungsten target is also shown in the figure. The critical impa€he simple energy balance equation implies that the inertia is

velocity below which the projectile can not penetrate is about 7Qfilized to open a cavity frona,; to a. against the resistant pres-

m/s. The penetration velocity then increases with increasing irsareR;. The solution to the final cavity size is then given by

pact velocity. Generally, it can be shown that the ratio of cavity

radius to rod radius increases with impact velocity, however, the a, \/W

ratio is less than 2.5 even up to 4 km/s. As expected, it can be A=—=\/1+ ——. a7

concluded that another mechanism should be taken into account to Ac1 R

explain the actual cavity measured in the experiments. This will o . . .
be described in the next section. When the drag coefficient is assumed to be(@?% a hemispheri-

cal nosg, this equation coincides with E¢l) but with a.,; replac-
ing projectile radius. This is due to the fact that there is no mush-
oL rooming for a rigid-body penetration. Again the current study is
Cavitation mainly focused on deforming projectiles, in which the modified
We now turn to the cavitation stage in which the inertia imBernoulli equation hold¢[8—10)).

parted to the target plays a role for further cavity expansion. ThisAs an illustration, Fig. 4 shows the variation & /a.)* with
inertia is created by flow in the target around a rod head movingispact velocity. For examplea¢; /a;) at an impact velocity of
constant velocityJ. To estimate the additional cavity formation2.7 km/s is about 0.7. This means that 70 percent of the cavity
due to the target inertia, we consider the target response toradius growth is due to mushrooming. This ratio at an impact
“equivalent rod”—a rigid body of the same shape as the defornvelocity of 1.5 km/s is about 0.@ungsten rod into tungsten target
ing rod head and moving at a constant penetration veldg3). case. In this case, 90 percent of the cavity radius growth is due to
In other words, the eroding rod resembles a spherical nose rigitishrooming. Hence, the extent of the cavity “overshoot” due to
projectile. Actually, due to deceleration of a rigid body there is ntarget inertia increases with impact velocity since thteterm in
steady state unless the body is self-propelled. However, stedfly. (17) becomes more important in the high impact velocity
state, except during the initial and end phases of the penetratibmit.
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Fig. 4 Square of the ratio of cavity growth due to mushroom-
ing to final growth with impact velocity

Comparison of Theory and Experiments 8 R A A SRR DA MM M B
A cavity growth model has been derived considering both tF [ | — Final Cavity ui -

mushrooming and cavitation effects. Since the accuracy of tl 7 7 - =-= Mushrooming Effect | g e 7]

current model relies on the validity of the assumptions as well

the accuracy of the selected values of the parameters, it is tes 6

with the experimental data. Comparison between the predictio
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Fig. 6 Ratio of cavity radius to rod radius with impact velocity,
experimental data for tungsten rod striking into tungsten target
provided by Hohler and Stilp  [15]

and the corresponding experimental data are made in Figs. 54"
Figure 5 compares Hohler and Stilp’s ddfd5]) to the current &°
model for the impact of steel rods into steel targets. The cavi o
diameter was measured at the mid depth of the cavity. It can 3«
concluded that by including the cavitation effect, the predictior
compare well to the experimental data at high velocities as we
Even for the case of penetration of tungsten rogs, (
=17400 kg/m) into tungsten target§15]), as shown in Fig. 6,
the agreement is quite good. A further comparison for the case
aluminum alloy projectiles f,=2800 kg/ni) into lead targets
([13]), which produces quite a large crater size, is also shown

n
T
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Fig. 7. As shown in the figure, most of the cavity production i

due to the cavitation effect in this case. The analytical predictiol V (km/s)
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Fig. 5 Ratio of cavity radius to rod radius with impact velocity,
experimental data for steel rod striking into steel target pro-
vided by Hohler and Stilp  [15]

Journal of Applied Mechanics
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Fig. 7 Ratio of cavity radius to rod radius with impact velocity,
experimental data for aluminum alloy rod striking into lead tar-
get provided by Tate [9]
Table 1 Material parameters used in the analysis
Projectile—Target Y, (GP3 (Ri—Y,) (GPa
Steel-Steel 1.6 265
Tungster-Tungsten 2 4.17
Aluminum Alloy—Lead 0.8 —0.55

compare well with the experimental data. Table 1 summarizes the
material data used in the analysis. The material data for the alu-
minum alloy and lead are obtained from R€®,16].

Conclusions

An analytical model for cavity formation in a ductile target by
hypervelocity penetration of a deforming long rod is presented
and the predictions are compared with the experimental data. It
has been demonstrated for deforming projectiles that by consider-
ing both the mushrooming and cavitation effects the predictions
compare well with the experimental data. An estimate of the
amount of mushrooming with respect to the impact velocity is a
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valuable contribution of the current analysis. The model is also ggz'BgfzeonC:eengsag 5223155tAhsggceg1tﬁgir?nal ngzplosium on BallisAseri-
found to be accurate fo_r rod pr_OJe_ctlles f(_)r many dlfferent_materlalm Shinar, G. 1., Bafnea] N.. Ravid. M., aﬁé)ﬁ‘“rsch’ E., 1995, “An Analytical
systems. For a deforming projectile at high impact velocity, some ~ model for the Cratering of Metallic Targets by Hypervelocity Long Rods,”
of the kinetic energy is absorbed by the enhanced expansion of a Proceedings of the 15th International Symposium on Ballistarsel, Ameri-
hole otherwise it goes towards penetration. The application of the can Defense Preparedness Association, pp. 59—66.

current cavity formation model to a nonhomogeneous rod, such ak Tate. A., 1967, “A Theory for the Deceleration of Long Rods after Impact,”

. . . J. Mech. Phys. Solidd5, pp. 387-399.
JaCketed rods, has been 'nveStlga(EHﬂ)' [9] Tate, A., 1967, “Further Results in the Theory of Long Rod Penetration,” J.

Mech. Phys. Solidsl7, pp. 141-150.
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| Hysteretic Behavior of a Bar
Swanwe | Under Repeated Axial Loading:

Engineering Research Institute, -
Sato Kogyo Co., Ltd. A E t d d H t
Nihonbashi Honcho 4-12-20, n x e n e Is 0 rv
Chuo-ku, Tokyo 103-8639, Japan
Analytical study is made of an elastic-perfectly plastic bar under repeated axial loading.

1 A previous formulation on a pin-ended bar is extended here to include the effects of load

T. Nonaka eccentricity and rotational constraint at the bar ends. Basic equations are derived, based

PFF)fESS.Of’ on the assumptions of planar and small deflection, and of symmetry with respect to the

Chubu University, bar center. The end spring is allowed to yield. Numerical examples are presented to

- 1200 Matsumoto-cho, demonstrate the application of the basic equations, and adequacy is shown for any speci-
Kasugai, Aichi Prefecture 487-8501, Japan fied history of axial displacement. Diagrammatical representation of state variation pro-

vides a better understanding of the hysteretic behavior as well as the applicability of the
basic equations.[DOI: 10.1115/1.1360691

Introduction buckling behavior of steel braces in frames shows that an elasti-
. . . cally restrained brace can be treated as a pin-ended strut of half
(ron 2t uacs o Braoed amoe, oy eation ot the perormalendth (8], his is uncertain for repeated loadif)). Thus, an

: P Ig(ffaempt has been made in the present paper to develop an ex-

of these structures requires knowledge of Fhe .Ioad-.deformatiP ded theory that allows for externally applied end moments as
characteristics of the members. Plastic action in axially load Il as load eccentricity on a bar

members ordinarily takes precedence over flexurally loaded mem-r. papers have come to the authors’ attention, dealing with

bhersl becausse of thel pred%mlnance 'P stlffm;_ss ofdthe forr_nebrl OYf& effects of end restraints on the hysteretic behavior of steel
the latter. _trugtura members are often subjected to variable B‘?éces([&lo]). Prathuangsit et al. have assumed elastic-perfectly
peated loading; load due to winds, earthquakes, cranes, trans‘ﬂ)‘fé’stic bending, and made use of the notion of a yield hihgg.
tation vehicles, and some machine parts are applied repeatedly-if, 1a1e into account that axial force reduces the fully plastic
nature, and they may act in different or opposite directions. Algment put not that plastic axial deformation takes place at a
axially resistant member in such a condition may buckle undgfe|y hinge in addition to bending or rotation. While the latter fact
compression, deform plastically, but may partially recover in @& e understood from the plastic flow or normality rule under
subsequent tension. It may undergo plastic elongation and a3 @npined action of bending moments and axial forces, this is not
result become loosened, reducing the overall stiffness of the StWE(:ognized either in earlier papers of their grd[L,12). It may
ture. . . be worthwhile to point out that an account of the plastic axial
Because of the lack of knowledge on the hysteretic behavior gktormation at yield hinges in a kinematical approach leads to a
axially loaded structural members, a series of investigations Wagjyction in the plastic collapse load of a fraffi&3]); this is the
begun a few decades ago to determine the load-deformation relgme as the effect caused by the reduction of fully plastic mo-
tionship of a steel bar. Aside from computational or experimentglants due to the existence of axial force in a statical approach. In
studle_s, previous analyses have provided the derlvatlon of bagig papers cited abov§l—7]), the plastic axial deformation has
equations in a closed forn{1-7]). On the basis of a one- heen shown to play an important role in the hysteretic behavior of
dimensional idealization and of elastic-perfectly plastic behavigy, axially loaded bar of moderate length. Mitani has modified
of its element, the basic equations are adequate to formulate fi§naka’s formulation to analyze eccentrically loaded bars with
load-deformation characteristics of a simply supported prismaiigastic restraints against rotation at the bar efidi§]). With re-
bar for any specified history of axial loading. It was assumed thagrse to step-by-step integration, he has considered some nu-
an effective |ength C0u|d be found SUCh that the bar had inﬂectioﬁ%rica| examples Of steel bars Of rectangular and Wide_ﬂange
or was free to rotate at both ends of the length under the action@bss sections.
the centroidal axial forces. N The present paper is concerned with a more general formulation
While the results are of great value when these conditions &t allow for nonlinear rotational restraint as well as load eccen-
met with sufficient accuracy, there are cases where great eccgitity by extending the previously established basic equations.
tricity is brought about by the connection and cases where thgnphasis is placed on closed-form formulation, even with the
effective length cannot be approximated as constant or is difficeffawback of drastic assumptions.
to estimate. An example is a braced frame in which braces may
have eccentricity, or bracing and neighboring members are of
comparable flexibility. End supporting gusset plates deform elas-
tically or may yield due to the rotation of the ends of the brace, or
braces may have initial deflections. Although a study of pos}fxssumptions

Formerly at Kyoto University. Supposing an initially straight bar of lengthin equilibrium
Contributed by the Applied Mechanics Division ofif AMERICAN SOCIETY oF  With a slowly varying eccentric axial load, analysis is made on the
MECHANICAL ENGINEERS for publication in the ASME OURNAL OF APPLIED  hasis of S|mp||fy|ng assumptionsy in the same line as before ex-

MECHANICS. Manuscript received by the ASME Applied Mechanics Division, Jun : i : _
24, 1999; final revision, Nov. 28, 2000. Associate Editor: R. C. Benson. Discuss'eCept for supportlng conditions. They are summarized by the fol

ion -
on the paper should be addressed to the Editor, Professor Lewis T. Wheeler, DeJQW'ng items:

ment of Mechanical Engineering, University of Houston, Houston, TX 77204-4792, . . . . . . .
and will be accepted until four months after final publication of the paper itself in the 1 A uniform cross section is assumed, with dimensions suffi-

ASME JOURNAL OF APPLIED MECHANICS. ciently small in comparison withL that the bar may well be
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Fig. 1 Problem under consideration

Nb
*Ea

. . . . Fig. 2 Dimensionless positive quantities
treated as a one-dimensional continuum, but the slenderness is

moderate so that the strength in compression is of the same order
of magnitude as that in tension.

2 The cross section is assumed to be of such symmetry that {8fgth of the bar due to elastic and plastic deformations, and by
bar deforms only in a definite plane without torsion. _change in geometry accompanied by lateral deflect®ee the
3 Plane cross sections are assumed to remain plane Wlthymbendix for the separability of componentdhe relative dis-

shear deformation. Elemental behavior is assumed to be elasfiscement is nondimensionalized by the elastic limit displace-
perfectly plastic under combined action of axial force and bendingent. It follows that

moment, and the yield condition is such that the bending moment
is a function of the axial force.
4 The load is composed of a pair of equal and opposite forces

T NGL
with intensityN applied at the ends in the direction parallel to th . . . . .
original axis of the bar with eccentricit in the plane of defor- %)n the basis of Assumption 6, the axial force is approximated as

mation. The loadN is taken positive when tensile and negativéonstant along the bar axis, and equatd'he componens® due
when compressive. An assumption is made of symmetry with i €lastic deformation equals the dimensionless InadN/N, .
spect to the center of the bar so that the two halves behave inRilastic pure elongation induces the componghand plastic de-
identical manner. formation at yield hinges induces the componé&htThese plastic

5 Constraint from neighboring members at the connection g@mponents as well as the componéhtdue to geometry change
represented by spiral springs as shown in Fig(The deflection depend on the deflected configuration. It turns out through ex-
curve in this figure represents a generic state with previous hirgmples of analytical behavior that in an initially straight bar yield
ing action) It is assumed that the resisting moment is a piecewigénges appear at the center or the ends or both, so that half of the
linear or polylinear function of the angle of end rotation; thisleflection curve is determined from the elastic equilibrium equa-
includes the elastic-perfectly plastic spring as a special case. tion which, on the basis of Assumption 6, reads

6 Two assumptions of small deformation are made: Change in

6

=5+ 6P+ o'+ &Y. (1)

2
length is negligibly small as compared with the original length of d_Z_ p=e for 0<é<1 )
the bar; deflection is small enough so that the square of the slope dé
in the deflection curve is negligible in comparison with uni§ee \ynere
the Appendix for discussion on this point.
7 Material ductility and absence of local instability are as- 2X 4Ely NL?
sumed. ST mmgez "“VNag ®
o

Assumption 1 excludes extremely stubby and slender bars.giide is the ratio of the end moment ¥, . The combined action
cross-sectional dim_ensions are of the same order of magnitudey@ighe |oadN with eccentricityD and the resistant momekt,r at
the bar length as in the former case, shear effect may becofig end is replaced, based on Assumption 3, by a statically equiva-
important; on the other hand, if the bar is so slender that its cofflgnt system of the centroidal axial loatland end momeni e
pressive strength is negligibly small as compared with the tensile, r+ND. Positive directions of the dimensionless quantities
it may well be treated as a tension-carrying member like a stringe indicated in Fig. 2. Because of symmetry, only the left half of
or cable. The Assumptions of 2 and 7 are rather stringent. Thifie dimensionless deflection curve is shown. Ketlenote the
walled cross sections tend to be distorted and/or lose local stalyihgle of rotation at the end yield-hinge, andiedenote the slope
ity, when subjected to significant plastic straining during repeateghgle at the point just to the right of the end hinge. Assumption 5
loading ([14,15)). Nevertheless, past experimental studies haygrmits the dimensionless resistant monrettbe linearly related
shown a reasonable agreement with the basic formulation of thethe angle of end rotatiogr— ¢, so that

present theory under limited cycles of loading for negligible ec-
centricity and end restrairff16]). r=ke(¢—¢)+ky 4)

The displacemend of an end takes place relative to the othefyhere k, and k, are piecewise constant factors and are to be
end along the original bar axig is taken positive for end sepa- eyaluated in each range of linearity. If the spiral spring is plastic,
ration so that the distance between the ends amountsta.  these factors depend on the history of loading in the context of
The x-y coordinates are taken to indicate the deflection cur¥ge|ding in plastic theory, taking distinct values for loading and
y(x) with the origin at an end. Positive direction pfis taken ynjoading processes. For perfectly plastic action with limit mo-
opposite to the load eccentriciy (Fig. 1). Young's modulus is mentM ,, for examplek,=0 andk,==M,/M,.

denoted byE, cross-sectional area b, moment of inertia by, Equation (2) is integrated with end conditiong=0 at ¢=0
limit moment in pure bending b, and limit load in pure anqdy/dé— ¢ asé—0, to give

tension byN, .
sinh(v¢) N coshivé)—1 5
Derivation of Basic Equations = v © V2 ®)

It is convenient to treat the load as the independent variableNote thatv is treated as known andj and e are determined
and to determine the deformations as its functions with due awelow, by noting that bending moments are known at acting yield
count of the nonuniqueness and history-dependence of their rdimages and that the corresponding rotations are predetermined in
tions. The relative displacement is caused by change in theelastic processes. When the bending momdgt at the center
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reaches a value such that together with the axial force, it satisfissesponsible for the componedt. Suppose that the end yield-
the yield condition, plastic action takes place with a yield hinge &iinge is activated with the coordinatés n) of the dimensionless
the center(see Fig. 2 for positive direction af). In this plastic stress resultant changing te- de,n+dn) by satisfying the yield
process is expressed as a function ofon the basis of Assump- condition. The value ofs® changes accordingly by an amount
tion 3, and the boundary condition at the cert®p/dy>— —c as  proportional to the incremert in hinge rotation occurring dur-
&—1 reads ing this process. The flow or normality rule of the theory of plas-
ticity stipulates that the factor of proportionality depends on the
stress state and equals(a/2)(de/dn), which is a function o
Let 26 be the angle of hinge rotation amds the slope angle at the according to Assumption 3. Similarly, the incremei#t of the
point just to the left of the center in the dimensionless deflectiarentral yield hinge induces an incrementdh during the change
curve. The hinge rotation during this process is determined froftom (c, n) to (c+dc,n+dn) at yield. By noting the same con-

¢ v sinhv+e coshy=—c. (6)

the condition thatly/d¢— 6 as {—1, which becomes tribution from the other half of the bar, it is seen that
sinhv déP=—afe'(n)d¢+c’'(n)do 14
iy coshv+e =6. (7 ) o [ _()¢_ _()_] (14)
4 where the primes indicate differentiation with respect to the argu-

Equation(7) also serves as the boundary condition at the cent@lentn. Thus &° is given by integrating Eq(14) for the ranges
for elastic action, in whicl is known from the preceding plastic Where ¢, and/or ¢ varies, i.e., for each plastic process. If, for
straining and remains constant under varying load. example, plastic action takes place only at the bar center &ith
Similarly, when plastic action takes place at the emi$ given varying from 6 to ¢ for n varying fromn; to n, integration by

from the yield condition, anas can be found directly either from Parts leads to
Eq. (6) or from Eq.(7), depending upon central plastic or elastic P
action, respectively, in terms of known quantities. During this 5P:faf
process the angle of rotatioh at the end hinge is determined

from the end condition

e=Kg(¢y—¢)+k,+nd (8) T

whered=N,D/M, . For elastic action at the end, i.e., when the o . . . .
end hinge is inactive, the boundary condition is given by (B, where oY is an |nt.egral congtant during this process and is deter-
in which ¢ is known from the preceding plastic straining; E8) mined from previous plastic processes starting from zero at the

is combined with Eq(6) for plastic action at the center to provideVirdin state. In the same manner,

[ke¢p— (kp+nd)]coshy—c P=—a ¢e’(n)d¢+5p
- v sinhv+ Kk, coshy ©) e ‘ (16)

c’(n)do+ &%

‘e (15)

6.c'(n.)—6c’(n)+ fnec”(n)dn

Ne

+ 58

o (ket+nd)v sinhv—kg(c+ ¢v sinhv) (10) 0

. +o7
v sinhv+k, coshy

$e€’(Ne) — pe’(n) + jn¢>e”(n)dn

and combined with Ec(7) for elastic action at the center to pro-if plastic action takes place only at the bar ends wikivarying
vide from ¢, to ¢ for n varying fromn, to n, where &t is an integral
constant. Plastic action can take place both at the center and ends

sinhv sinhvy .
0+Kep —— (K, +nd) simultaneously. Both the components then add up to prodfice
W= v v (11) with a properly predetermined integral constant.
sinhv It is to be noted that the present formulation allows for some
coshv+ke » variables to take both signs. Whéw is negative,» becomes

imaginary and certain equations involve complex functions. Be-
Ke0+ (kp+nd—Kkeep)coshy cause the variables introduced in this paper are of physical mean-
e= sinhv : 12) ing for negative load, these equations can be expressed in terms of

coshv+kg ” real numbers and functions. In fact, this is accomplished by re-

placing coshr by cogy| and sinh/v by sin|/|+; n=0 is an iso-
With the deflection curve of Eq(5) thus determinedg® is lated remoyable singularity, and hgnce cgntinui;y .is assured by
evaluated by noting that the total difference in length between tREPPlementing the values of the variables in the limitO as the
arc and chord of the entire deflection curve is twice the integratidf@lues forn=0. This was discussed and confirmed in an earlier
of J(@X)Z+ (dy)?— dx~(dy/dx)2dx/2 from x=0 to x=L/2 on Paper((4]). , o ,
the basis of Assumption 6. Thus, _ Plastl_c eIo_ngatlon_caqses a chamgé‘zp in 62_0, W|t_hout _
interaction with bending in a perfectly straight configuration. This
A ML 2 dy 2 is possible in the case df=0, withn=1. This can take place also
CBEN, | I dé dg for d#0 whene=0 and =0, in which case the bar becomes
(13) straight with end kinkp# 0, after undergoing plastic distortion. It
sinh(2v) may also be possible for the bar to remain straight under the yield
%, load in pure compression. However, the bar will most likely
v buckle before undergoing appreciable plastic contraction except
for extremely short or stubby bars, which are not considered in
this paper. The buckling or bifurcation load is found by regarding
centroidal compression as eccentric compression in the limiting
wherea=(A/1)(M,/N,)? is a dimensionless parameter depend;ase of small eccentricity, to be the smaller of the elastic buckling
ing only on the cross section shape. load and the yield load in pure compression. The elastic bucking
In the presence of axial force, plastic action at yield hingd9ad is determined from the condition for a nonzero deflection to
causes not only hinge rotation or relative rotation across a hingecur withd= 6= ¢=k,=0, to beN.=4EI| v2/L?, wherev, is
but also plastic axial deformation or relative displacement, whighe solution of

0

(V2¢2_62)+(V2¢2+62)

o
~ 4n

+ ye{cosh2v)—1}
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ve+ ke tanhv,=0 (17) corresponding to a hexagonal yield curve, when expressed in
. terms of the central momeiisee Fig. 8)). This approximation
dependent upon the spring constagt ) _ simplifies integration as in Eq$15) and (16), since the second
Another deformation parameter of importance is the maximurivative of moments with respect to the axial force is zero in
deflection. The dimensionless central deflectiors found from plastic processes.

rotational equilibrium of the half bar in Fig. 2, to be Numerical results are illustrated in Fig. 3 with=0.6. For the
c+e abscissas ofa) to (g), quantitiess, c, €, 6, ¢, ¥, andv are taken,
V=T (18) respectively, as against the common ordinate of the dimensionless

loadn. Figure 3h) shows the moment-rotation relationship for the
The aforederived basic equations are adequate to determineehd spring. Figure 4 is a sketch of deflection curves, in which a

hysteretic behavior of a restrained bar under any specified hist@glid circle indicates a yield hinge, and a cross indicates yielding

of axial loading with fixed end eccentricity. It is to be notedpf the end spring. The encircled numerals, which are consistent

however, that load specification does not guarantee a unique tlgough Figs. 3 and 4, indicate the hysteretic series in order. The

termination of the corresponding deformation. Under existence $fme numerals are used in the subscripts of variables for corre-

plasticity, loading and unloading processes bring about entiredponding states. The dotted lines in Fig&)3and(c) indicate the

different subsequent behavior; it is necessary to identify whigheld curve. The dotted-and-dashed lines are drawn in F@).f8r

path to follow at a bifurcation or fork. In contrast, specifyingyielding of end spring, i.e.,

history of axial displacement determines the history of the load

and hysteretic behavior. e=*tmp. (20)
E | Loading is initiated with tension. Linearly elastic response up to
xamples Q@ is described by the relatiofi= 6°=n. The proces§D— @ is

Two examples are presented of the application of the bagifastic elongation with increasing'. Displacement specification
equations for a specified history of axial displacement to shoyies
characteristic features of hysteretic behavior. The spiral spring is
assumed to have an elastic-perfectly plastic moment-rotation rela- 85— 6 =65=6,—6,=6,—1. (21)
tionship with elastic spring constantE2k/L and yield moment
mpM,. Among components of in Eg. (1), 6° equals the inde-
pendent variablen, &9 is given from Eq.(13) and 6P from Eq.
(15), or (16), or from both Eqs(15) and(16). Therefore, unlesg
increases under constant lollg, & is given from variable®, ¢,
¢, c ande, which are to be determined below.

Unloading from(2) is associated with elastic contraction, until the
bar buckles ath=—N./N, at 3. Lateral deflection increases
elastically as seen in Fig(®, until plastic action takes place at
@, when the state of stress at the bar center reaches the yield limit
as in Fig. 3b). The load variation ir®— @) is small for bars of
moderate slenderneg#l]), and neglected in the present formula-
Example 1. Consider repetitions with a fixed dimensionles&ion. Deflection is expressed in terms of end slapewhich is
displacement amplitudé,=>5 in both sides. Lek=0.45, m, determined later. Wittt=0, Egs.(7) and (17) are combined to
=0.5,N./N,=0.8. Let eccentricity be absent, ade=0 so that give
r=e. With weak-axis bending of a wide-flange cross section in

mind, a piecewise-linear yield condition is assumed such that e=Key. (22)
lc|=1 (|n|<0.5) Equation(6) gives
1 Ketp
E|c\+|n|:1 (In|=0.5) (19) €=~ Cosv, (23)
n
1@ @
O
-5 }—- 5 @
— 5 -1
®
®
@3

© ® ® M

Fig. 3 Behavioral diagram of Example 1
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@ Plastic hinge
X Yield of end spring

Fig. 4 Deflection curves for Example 1

and Eqg.(13) gives

(¢4

€0 2v,)(COSVe SINVe— Ve)
4n '

sinv,

2Ve

9= (24)

®—@®@. Specified values ob, therefore, determings with re-

expressed bk.=0, and leads te®@=0, c=my/2. End fixty ke
—1<cosy.<0, andc>e>0. The process betwe&n) and®@ is
reversible.

Plastic action takes place at the bar center in the pro@

trajectory follows the yield curve as shown in FighB With ¢

nent

SP= a[ fn oc”(n)dn—6c’(n)

the center but also at the end spring frggh The procesgs)

(25)

SS

The reversed displacement for the proc&s- @) is realized
by elastic recovery witth= 65, ¢= ¢ps=0 andx.=k. The end
spring undergoes residual rotation. Equati8nis solved fork,
by noting that plastic rotation terminates@t to give

kp: my— K(— ¢s).

(26)

Equation(11) determinesy, and Eg.(12) e. Equation(6) then

determine<.

The central yield hinge is again activated@t The process
@—@® is analyzed in a manner similar to the procés-@) in
distinction with a tension as against a compression in the latter
process. Additional plastic action starts at the bar er@) ats well
as at the central yield hinge. The yield condition gieemnde, Eq.

(6) ¢, Eqg. (7) 6, and Eq.(8) ¢. Since # and 5 have remained
constant during®— @), Eq. (15) gives

SP=a| B¢’ (ny)— 9c’(n)+J'

n

oc’"(nydn|+88.  (27)

nz

State(@) indicates another reversal in displacement loading. A
] o cycle in displacement variation i@ — (@ results in positives®
Itis only 6% among the components éfthat varies in the process and hence in elongation of the b@b—7]). This effect gives rise
C ) to a reduction in load, as seen in the difference in the ordinates of
course to Eq(24), and he.nce determlnesgandc on the basis of @ and® in Fig. 3(a). This feature plays an important role in
Egs.(22) and(23), respectively. The buckling load depends on thghterpreting experimentally observed hysteretic behavior of steel
stiffness of the spring. The particular case of a pinned end fi$embers under axially repeated loadifi§—7,17). Further rep-
c i : y etitions of displacement cycling induce further reduction in the
== leads toe=c with cosye=—1. For intermediate stiffness, peak strength. Thin lines are drawn in Fig. 3 for five consecutive

cycles after®®.

Example 2. A stubby bar of the cas®lo/N,=4 is consid-

—(@®. The yield condition determinesin terms ofn. The stress ered. It is taken thak=1.7,m,=0.7, andd=1. The yield condi-
tion is taken to express full plasticity for a rectangular cross sec-

=0, k,=0 andk.=k, Eq.(9) givesy, Eq.(10) givese, and Eq. tion. It reads, e.g., for central moment
(7) gives 6 in succession. With#,=0, Eq.(15) gives the compo-

lc|+n2=1.

(28)

It is taken thata=0.75 corresponding to the rectangular cross
section. Variation ofé is specified as 6:2—0—3. Numerical
results are shown in Fig. 5. Variableande are distinguished due

. . . . . . to eccentricity, which leads to slanting lines in Figc)Bfor yield-
in which the integrand vanishes. Plastic action occurs not only iﬂb of the end spring, as described by

—(® is followed similarly with relationk,=0 andk,=m,. e=nd+*m,. (29)
n n n n
1, 220 2 hde e 200l o
® ord V@ i\
A L e 7 e 1 r
2 3 A LS // 1 o5 DO\ 05
e /_,@c@ - 3 | o)
-1 -t A - At
@ ®) (© @
n n n n r
Z:Di 11 @ Q® o) 1 11
®© ® @ ® o{\i® ®8 ® ®
0 v¢ ',W } :V + W'd)
1 2 1 1 -1/ /0
8 @y |
@ @
O & ® & ® ) ®j
At -1 M1 -1 ® 1
© 6] (2 () @@

Fig. 5 Behavioral diagram of Example 2
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-® —_— The process subsequent® is close to that i®—@®), the
D@ R difference being that the bar center yields with vanishing central
NG - » deflectionv =0, as shown in Fig. &). Deflection remains con-
N < > stant, and so is the central hinge rotation. The end hinge is acti-

—-—— —

vated in addition to the end spring, and contributes to changes in
&P and ¢.

e -~ Concluding Remarks
IOANG) - A Basic equations are first derived and it has been shown through
o ./‘\._’ examples that they are adequate to determine the hysteretic behav-

ior of an elastic-perfectly plastic bar under a repeated eccentric
o axial load. Both ends are supported by piecewise-linear springs.
® Pilastichinge Symmetry is assumed with respect to the bar center, with deflec-
X Yield of end spring tion in a definite plane due to restrictions set forth earlier. The
primary disadvantage in this closed-form formulation is that the
independent variable is not the displacement but the load. There is
a need to judge which path to follow, whenever bifurcation takes
place, such as at reversals in displacement direction, or at the
. L . . . initiation and termination of yielding. Restriction on the magni-
This relation is derived by settink, =0 andk,==m; in EQ.(8). 4,46 of deflection is not st}r/ingeniq in engineering applica?ion.

The state of stress of the bar end is represented by a point betWgghL | geflection analysis as in this formulation retains sufficient
this pair of parallel lines and within the yield curve of dotted lines o racy, unless lateral deflection reaches a magnitude of the
The fact that the allowable domain excludes the stress (@i}, original length([4]).

gives 6'=0. Deflection curves are sketched in Fig. 6.
Eccentric tension induces bending so that the bar starts to el% endix

gate with a deflected configuration. The elastic behavior upto P

is determined simply wittke=k, k,=0, §=0, and$=0; ¢is  Separability of Displacement Components and Effects of

given by Eq.(11), e by Eq.(12), and therc by Eq.(6); 6°andé® Large Deformation. It has been taken for granted in the text

are the only nonzero components®fYielding takes place at the that the relative displacement is divided into four components.

bar end afteX®. The yield condition give® in terms ofn. Sub-  The validity of this treatment was confirmed previou§lg]), and

stitution of #=0 in Eq.(7) givesy; Eq.(8) gives¢ and Eq.(6) C. is repeated here briefly with due regard to the effect of large

Equation(16) provides deformation.

When the length changes froin, to L, it follows from the

(30)  definition
LotA
L0+A=j dx
0

Fig. 6 Deflection curves for Example 2

P=a

fndw”(n)dn—sbe’(n)

as the remaining nonvanishing componentsofThe end spring
starts yielding af2) as well as at the bar end, havie@f Eq. (29).
The load cannot increase beyond the ordinate2nf The end that

spring and bar end undergo plastic rotation in opposite directions. L L
Since 6° and 6% remain constant, Eq14) gives plastic deforma- A:f cosbds—L,= f cosdds—L|+(L—Ly)
tion at the unloading poin® as 0 0
88— 88= 53— 5,= — a€’ (N,) (a— b). (31) wheresis the arc length measured along the deflection curve from

the origin of the Cartesian coordinatés y) and @ is the slope
Specifieds therefore determineg as well ass®. Deflection does angle. The quantity in the first pair of parentheses is caused by a
not vary with constanty; 3= ,. change in geometry, and is the displacement which would take
Elastic recovery from(3) is described byd=60; and ¢=¢5. Pplace if a straight bar of length were deflected laterally; the
The end spring returns elastic also with= k. Spring factork, is ~ quantity in the second pair of parentheses is the change in length.
found with recourse to Eq8), and hence from The separability of the changes in the geometry and in the length
is thus established without any restriction on the magnitude of
€3= — My +Nzd=k(h3— ¢3) +ky+nad. (32)  deformation.
When deflection is so large that the square of the slope in the
lection curve attains a magnitude of the order of unity, the
Cutvature cannot be approximated by the second derivatiwe of
with respect tok, and pertinent distinction has to be made between

e : g thex ands-coordinates. Equatior(®) and(13) are no longer valid
?f(gdg:sg(gS)(.pSg;]%eéﬁ rrirsn;elzréfivceolgﬁéﬂta?\gse’ iqfﬁ(g)ai(?e)c’:t?gr? Ofin theory. Exact analysis of large deformation has shown that this

: : : : : : condition of large deflection is realized when the decrement in the
varying 8 at (&) gives rise to elastic behavior. Procéss—(®) is . ) )
analyzed withd= 65 in a manner similar t6®— @. distance between the bar ends attains a magnitude of the order of

After undergoing central hinging, both the center and end stdfe bar length, and, through numerical examples of moderate slen-
yielding at@. The yield conditionlgives: and e. Equation (6) erness, the effect of large deflection has been found not to be

provides ¢, Eq. (7) 6, and Eq.(8) &. With =6, and o, significant even under such a condition. Exceptional cases are for

_ : : extremely slender bars or bars deflected into lo¢BH—7).
¢, Eqs.(15) and(16) are combined to provide Separability of the change in the length into elastic and plastic

Equationg6), (11), and(12) give c, ¢ ande, respectively. Deflec-
tion is so small during the elastic processes that the correspond
portions of then- 6 curve are almost straight.

The bar center yields &), with c determined from the yield

n components is a basic premise in the theory of plasticity. Further
050’(n6)700’(n)+f oc”"(n)dn+ ¢ze’'(n;) —¢pe’(n)  separation of the plastic deformation into two components is
Mo made, because a change in the compo@ris accompanied by
changes in load and other variables, as against the compéhent
+65. (33) The latter is associated with a straight configuration; unlimited

=«

+ jnqbe”(n)dn
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plastic elongation can take place undé=N,, being controlled  [7] Nonaka, T., 1984, “Closed Form Formulation for the Hysteretic Behavior of a
0n|y by displacement constraint at the ends of the bar. When Bar Under Repeated Axial Loading, Part 3—Plastic Straining and Character-
. . . . . istic Features,” Trans. Arch. Inst. Jpn., N&43 pp. 42-50(in Japanese
elongathr_l attains a mag_nltUde of the OrdeLbeefore V|0|at|ng [8] Prathuangsit, P., Goel, S. C., and Hanson, R. D., 1978, “Axial Hysteresis

the condition of Assumption 7, then the lendtihas to replacé, Behavior With End Restraints,” J. Struct. Div. ASCEQ4, No. ST6, pp.

in the consideration of geometry of the deformed bar. A simple 2261-2277.

account of this effect as well as the consequent changes in cros] Fukuta, T., and Yamanouchi, H., 1986, “Post-Buckling Behavior of Steel

sectional dimensions was made previously by resorting to the as- Braces With Elastically Restrained Ends,” J. Struct. Construct. Eng., Trans.
ion of the similar figure of cross section together with plas;, , Arc- Inst: Jpn., No364 pp. 10-22(in Japanese

§ur_npt|0n 0 o g ! 9 p [10] Mitani, 1., 1978, “An Elastic-Plastic Analysis of a Restrained Steel Bar Under

tic incompressibility([3]). As a result it has been found that by Repeated Eccentrical Axial Loading,” Trans. Arch. Inst. Jpn., B84, pp.

reducing the buckling load in the proportion of {/L)*, the 65-73(in Japanese

weakening effect of great elongation is somewhat significant conf11] Higginbotham, A. B., and Hanson, R. D., 1976, "Axial Hysteresis Behavior of

pared with the effect of large deflection, under alternate repeated Sl Members,” J. Struct. Div. ASCED2, No. ST7, Proc. Paper 12245, pp.

loading with the same extreme in the tension and compressi 1365-1381.

. g p c[i‘z] Kahn, L. F., and Hanson, R. D., 1976, “Inelastic Cycles of Axially Loaded

sides([5-7]). Steel Members,” J. Struct. Div. ASCE02, No. ST5, Proc. Paper 12111, pp.
947-959.
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Contact Stresses in Multilayered
Strands Under Tension and
Torsion’

First, an attempt is made to experimentally test the validity of the linear deformation
derivative results earlier developed for the multilayered wire-rope strands under tension
and torsion. The theoretical results are next utilized to obtain analytical expressions for
the maximum contact stresses induced in the multilayered strands with metallic wire core.
These closed-form solutions provide some useful design insights into the influence of
several important cable parameters and material properties on the resulting contact
stresses. The strong influence of the material modulus of elasticity on the critical stresses
is highlighted. Significantly, the analysis brings out how the contact stresses can rise to an

order of magnitude higher levels than that of the nominal stresses.
[DOI: 10.1115/1.1355777

Introduction Summary of Earlier Deformation Derivative Results

The problem of stresses and strains in conventional cables unket us consider a single strand cable made up sficcessive
der static loads has been analyzed by several authors. The ealéigers of helical wires. Let the layérhave m; wires, each of
theoretical investigations were extensively reviewed by CosteltadiusR;, helix radiusr;, and helix angley; . Since the metallic
[1] and later by Kumar and Cochr&f]. These analyses are charcore is treated as the first layer in the analysis, we have
acterized by several simplifying assumptions of questionable va-
lidity. Costello and Phillipd3—5] gave a new direction to these
studies by adopting a more comprehensive and fundamental Ag-discussed in the earlier page], the diameter of the core is

m;=1 and a,= /2.

proach to analyze the static behavior of the cables. They treateskumed to be large enough to prevent the helical wires in the
the cables as a group of separate curved rods in the form of helame layer from touching each other. Instead, the wires in a layer

ces. Their “linearized” deformation relations are applicable to theemain in contact with those in the adjacent layers only.

the wire-ropes of arbitrary cross sectidés7]. These approximate  The deformation relations earlier obtained by Kumar and Co-
relations lead to considerable economy of computational time @hran[2] for the single strand cable under consideration may be

the study of the cable characteristics although the analysis remasnsnmarized as follows:
essentially numerical in character. Jiang, et[8] recently

showed the validity of these relations through their finite element
analysis. They also found excellent agreement between the defor-
mation results of the wire-rope strands under axial tensile loads

based on Costello’s analysis and experimental results of Uttigghere

and Jone$9,10].

Kumar and Cochraf2,11] introduced some additional approxi-
mations based on order-of-magnitude considerations while apply-

F=F/(AE)=F e+FzB

M=M/(ER)=M_e+MgB (1)

F.=a3" [mRZsina;(sir’ aj— v cog a;) /A,
F =72 [mR(r; /R)sir? a; cosa;J/A,

ing Costello’s “linear theory” to the wire-rope analysis. This ap-
proach was instrumental in achieving considerable simplifications
and enabled an analytical prediction of the deformation character-
istics of single strand cables with metallic as well as fibrous cores.
Later, Kumar, et al[12] also developed analytical expressions for
critical contact stresses induced by tension and torsion in single
strand cables with fibrous cores. It may be pointed out, however,
that so far no attempt appears to have been made for experimental
verification of these theoretical results. nd

In this paper, first, an attempt is made to experimentally test tﬁe
validity of the deformation derivative results earlier obtained for» = metallic area of cross-sectiob;_ ,(m;7R?)
multilayered wire-rope strands with metallic core. Subsequently,E = Young’s modulus of elasticity of the cable material
these earlier deformation relations are utilized for closed-formF = tensile Force, cable is subjected to
prediction of the resulting maximum contact stresses in theseL = cable length for the test specimen
cables under tension and torsion. M = torsional moment, cable is subjected to

R = cable radius; R, +23]_3R;+Ry)

1The work for this paper was carried out at the Laboratory of Applied MechanicRi* = (Rj+ry); i=2,3,.n

and Reliability Analysis of the Swiss Federal Institute of Technology, Lausanne. ﬁi = R/R;i=12,.n

Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF _ . . . .
MECHANICAL ENGINEERS for publication in the ASME QURNAL OF APPLIED n = number of layers of wires in the cable including the
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, July core _

12, 1999; final revision, Feb. 24, 2000. Associate Editor: J. W. Ju. Discussion on the; = helix radius for wires in theth layer; R+ 22};%&.
paper should be addressed to the Editor, Professor Lewis T. Wheeler, Department of +R); i=2,3,.n

Mechanical Engineering, University of Houston, Houston, TX 77204-4792, and will 1 U

be accepted until four months after final publication of the paper itself in the ASME € = tensile strain for the cable§L/L
JOURNAL OF APPLIED MECHANICS. B = torsional strain for the cabldRd ¢/ L

M =73 [mR3 cosa;{(r; /R;)(sir? a;— v coS a;)
—(UHR; Iri}]
M=/ [mR{ sina{(r;/R)? cog a;
+ (1/4)(1+ v; sin® a; cos 2m;)}] 2)
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AL = elongation had a diameter of 3 mm each. The Young’s modulus of the ma-
¢ = angular twist over the cable length terial was determined by testing the core of the rope and was
v = Poisson’s ratio of the cable material found to be 157 GPa.

= v/(1+v).
" vt _V) . i Experimental Methods. Specimens with length of 500 mm
It may be pointed out that the above analytical relations for thgare cut from the as-received rope. To grip the specimens, special

Ioad'defqrmation derivatives are basgd on several simplify?ng sllow steel cylinders, 50 mm in length, were machined with an
Em);mjaﬂonﬁg 2{):2?(5&%“?;%2?;??Oenqsu;ct)irotnhserglrgtsirs]édﬁ]rgﬁm’iﬁ?ernal diameter of about 9 mm, equal to the effective diameter of
egrlier de\E/eIoped by Costelld3] from consideration of “inde- q?“? rope, and an outsnde diameter of .15 mm to_ﬂt the hydraull_c
pendence of path” for work done during loading. This was ndf"PS of the MTS machl_ne. To assure firm mo_untlng c_)f the speci-
unexpected, however. mens and avoid any slippage of the rope during testing, the ends

of the rope were brasured at the outside ends of the steel cylin-
ders. Figure 1 shows the schematic diagram of a typical specimen
along with the cable cross section.

The experiments were performed on an MTS 809 Servohydrau-
Materials. The single-strand wire-rope experimentally inveslic axial-torsional machine with a TestWare-SX software to record
tigated was obtained from Brugg Cables Acier $8H-1023, the data. Three types of experiments were carried out: a simple
Crissier, Switzerland It had a metallic core and one surroundingension, a simple torsion, and the combined tension-torsion. All
layer of six wires with a common helix angle of 80.4 deg and a@xperiments were deformation controlled with rates of 1 mm/min
overall diameter of 9 mniFig. 1). The core and the helical wiresin tension and 20 deg/min in torsion. As explained at the end of

Experimental Validation of Deformation Relations

40 L 400 10 40
— !
1SN : .

$15 - -
NN —_— .
X
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ENLARGED SECTION

X-X OF CABLE
Fig. 1 Schematic diagram showing test specimen along with the cable cross
section
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Fig. 2 Load-deformation curve obtained through simple tension test
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Table 1 Comparison between analytical and experimental val- is found to be maximum for the parameMrB. Even here, the
ues for the deformation derivatives of a simple 7 X1 cable error seems to be well within the normally acceptable limits. We
therefore conclude that the approximate analytical procedure ear-

Deformation Derivatives Fe Fe M. My lier followed is reasonably accurate for design and other practical
Theoretical Values 0.96 0.093 0.210 0.079 applications. Next, an attempt is made to utilize the closed-form
Experimental Values 092 0107 0215  0.095 deformation results for predicting the maximum normal contact

stresses in the multilayered strands with metallic core.

this section, a judicious choice of these rates is rather import :
for achieving higher accuracies in the calculations of the para??—ﬁalygs for Contact Forces and Stresses

eters. The tension and torsional loads were recorded as a functio@ontact Forces. On consideration of equilibrium of helical

of displacement and the angular twist. The tests were repeated ffifes, the normal force per unit length on the wir€s) as caused
various traction and/or torsion conditions. The excellent reprodugy the normal and binormal force components in tkte layer

|b|l|ty Observed estab”shed the rellablllty of the experimentthough contact with those in the adjacent inner |ayer’ can be
data. The influence of loading rates on the deformation charact@fitten as([2])
istics, however, was not considered in the present investigation. ]
Figures 2-4 show the experimentally obtained load- Qi=Tia(coS a//1])—Tix(sine| cosa;/r{) 3)
deformation curves. The first curve presented in Fig. 2 shows thgq e
variation of tensile force with increasing displacement for the ex-
periment wherein no torsional twist was permitted. The slope ofia = [mRE(e— A cota)]
the “linear” segment of this curve—indicated by the two Ti, = [#R'E/(4r?)co o][(Aa;(1—vs COS ;)

arrows—was obtained using least square fit. The slope of this +v¢6; Sin¢; CoSa]
straight line is required for computation of the deformation deA«; = increment in the helix angle of wires in thh layer
rivative F, using the relation under loads
FE:[L/(AE)]((?F/(?L) = E(1+ V)(l_Vi)iquai COSai—,B(ri/R)(l—vi)sinz Q;
0 = —wet(vlr)[223(2A ;R cotey) +AaiR coty]

Figure 3 represents the variation of the torsional moment with,,.
angular twist for the next experiment with fixed specimen Iengtg.)f
The slope of the “linear” part of the curve shown between the’

[V(R] /I’J)CO§' a]]
(.) after deformation under applied loads.

arrows is utilized to compute the derivatiké, as follows: On substitution ofA a; from above and making several simplify-
ing approximations based on order of magnitude of the various
Mg=[L/(ER")].(IM/3¢). terms, the earlier expression for the contact force per unit length

The tensile and torsional loads are now applied to a third spe€RN be written in the form
men when the displacement as well as angular twist were con-~ _ 2 _ - e .
trolled to increase simultaneously at suitably selected constan Qi=[m(RY/r)IE cos ai[F Mg—MFg] [AriF+AuMI;
rates, as pointed out earlier. The data thus gathered are presented =23 (4)
as force versus displacemdfig. 4(a)) and the torsional moment
versus angular twisFig. 4(b)). The slopes of the straight line fits Where
for the “linear” parts lying between the two arrows are needed toA;; = [Mﬁ(sinz a—vcog a;)—Mr;/R)sin a; cose .

obtain the remaining two deformation derivativeg and M. {1+0.25@; /r})? sir? ai}].
These “cross derivatives” are evaluated using the following relap . — - F 4(Si? aj— v co€ @) +F (r; /R)sin a; cosay .
tions deduced from Eqsl): [140.25(R, /r;)? sir? ay)].
Fs=[{L/(AE)}.(dF/oL)—F ].(1R).(L/$) It may be pointed out that the interaction between wires of the
. adjacent layers is characterized by two distinct types of contacts.
M =[{L/(ER)}.(dM/dp)—M gl.R.(¢/L). The wires in the second layer touch the metallic core continuously

It may be pointed out that the expressions within the square bra?i‘-’ng a helical line. In contrast, the wires in the third and higher
ets in the numerators in these two relationsFgrandM  appear |2Y€rS Cross their neighbors in the adjacent layers—above and
as a difference between two terms which are in general of th§/0W—at an angle and thus make only “point contacts.” The
same order of magnitude. Furthermore, in each case, the tenl¥y@ situations, being characteristically different, are treated
and torsional loading rates directly influence the two magnitud€§Parately.
and their relative closeness and hence are likely to have significantase 1 Contact Forces Between Core and the Adjacent Layer,
influence on sensitivity of the experimental parameter values thus  for j=2. Here, the wires in the second layer make a “line
computed. It is therefore imperative to choose the tensile aggntact” with the metallic core. In order to use the Hertz theory
torsional rates judiciously so that the two terms are “wide apartfor getermination of the contact stresses, the expression for the
S0 as to ensure higher computational accuracies. corresponding effective normal contact force per unit length on
Comparison of Experimental and Analytical Results. The wires in the s_econq layer due to axial and binormal force compo-
theoretical values of the force and moment deformation derivAeNtS:Qz-n, IS estimated as
tives are computed for the>71 single strand cable used for the Qz-n=3_,[m,Q; /sina;][sina,/my]. (5)
investigation. The values of these derivatives are also obtained
from the estimated slopes of the “linear segments” of the set of Case 2 Contact Forces in the Outer Layers, i.e., fei3i.,n
the load-deformation curves generated experimentally as de-contrast, these layers are characterized by “point contacts” and
scribed earlier. A comparison of the theoretical and correspondihgnce the normal compressive forces induced at the points of
experimental results is presented in Table 1. Evidently, the themntact are determined first. For the outermost layer of wires, i.e.,
retical results based on the Costello’s “linear theory” and the=n, the effective normal force at the contact points is estimated
additional simplifying approximations of Kumar and Cochf&h by multiplying Q; by the length of the wire segment in thith
compare quite favorably with the corresponding experimental vd&yer between its two successive points of contact with the wires
ues. The discrepancy between theoretical and experimental resinitthe adjacent inner laydf14]). Hence,
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Fig. 5 Stresses and deflections between two bodies in contact at a point

Pn:Qn[(ZWR:—llmnfl)Sinanfl/|Sin(an_ anfl)‘]- (6)

It may be emphasized that for the genethllayer lying inside
the outermost one, the normal contact forces develop due to con-
tributions through axial and binormal force components induced
in wires in the layerd, (i+1), (i+2).. andn. The resulting
normal force,P;, generated at the “contact points” between the
wires in this layer and the adjacent inner layer is obtained as

([14])
P|=Ejn:,[mJQJ /Sinaj].[(Z’]TRr,lSinai Sinai_l]/
[mim_ysinai—aj4|] i=3,.n. (7)

Contact Stresses

Case 1 Contact Stresses Between Core and the Adjacent
Layer, i.e., for i=2. A direct application of the Hertz theory of

b

d

kr

contact stresses leads to the following relation for maximum congzy )
pressive stresses in the region of contact between the wires in ;Qa(r)

second layer and the metallic core wire

7= VENQa f[(Si? ap/Ry) + (1R I/N[27(1-v7)] (8)

In dimensionless form, the above result simplifies to:
2= 02/ NEonom
= Q[ (SN @y /Ry) +(1R) [/ 0rpon{ [ 27 (1~ 17)]

9)
where
(FIAy).
Case 2 Contact Stresses in the Outer Layers, i.e., ¥8.i,n

As was pointed out earlier, the helical wires in the third and other
outer layers make “point contacts” with those in their inner ad-

Onom =

¥
A

jacent layers. The corresponding expressions for the maximyphere

compressive stresses at these “points,” also given by Hertz
theory, however, are relatively more involved and are given by
([15])

gi=c4(b/A) (10)
where

a = semi-major axis of the contact ellipse
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(15D

[1.5E(k’)P;A/7]¥3 semi-minor axis of the contact
ellipse

a variable fraction dependent aly Fig. 5 ([15])

ratio (B/A) also equal to

[(LKH)E(K") —K(K')[K(K')—E(K")]

— (bla)

J(1-13)

= (U4 (UR)—(cog & /R )+(LR_y)

+(cog a1 /R* )] —(1/4) (1R, + cog o IR* ;
+1/R{_;—cog @_1 /IR |)>—4(1R;—cog q; /R )
X (1R, _ 1+ cog aj_, IR_)sir? ]2

(14) (1R) — (co$ oy IR )+ (1R _y)

+(cog a;_1 /R )]+ (U4 (LR +cog o IR" ,
+1/R{_;—cog a_1 /IR* )?*+4(1R;+cog o; /R )
X (1R _1— cog aj_1 IRF_,)sir? y]*2

complete elliptic integral of second kind
complete elliptic integral of first kind
(a—ai_1)

[2(1—-v?)/E]/(A+B).

For applications, the value df first determined from the wire-
rope data is made use of to read the corresponding valuekof

andc, from the plots in Fig. §[15]). The need for such graphical
estimation ofc, appears to pose a major challenge, especially in
view of the intended analytical representation of the contact
stresses. To overcome this difficulty, an attempt is made to first
obtain an explicit approximate expression fbrby solving the
earlier equation relating it witk, k', and the two elliptic integrals
of k’. Undertaking the series expansions of the elliptic integrals
([16]), the expression obtained for this variable can be written as

d=(cq4/k)? (11)

Ca=[1+(1/2%(1/2)k'?+ (1/2.3/4%(11)k'*+.]/[1

+(1/2)?(3/2)k’ %+ (1/2.314%(5/3) k' *+ 1.

Although the fractiorcy is itself a function ofk’ and hence, it
may be observed that its values would always lie within a narrow
band. Therefore, it is possible to take
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k=(cq//d) (12) X(Tnom! Tnom COSa{1+ 9 sina(sif a—vcof a)}]  (16)

while treating the parametey as a constant, it being only mar-where
ginally sensitive to the values af On substitution of this value of 3
k, the expression for the maximum contact stresses takes the form Thom= M/(7TR%).

o= CoPHd =187 2B (13) The subsequent application of Hertz theory of contact stresses

h leads to their critical values in the cables as indicated below.
where
Case 1 Contact Stresses Between Core and the Second Layer.

0 = maximum contact stresses on contacting wiregfinand Here, the maximum contact stresses obtained can be written as

(i—1)th layers

Co = C,[0.75c4(1—k'?/4—3k' /64— ... )]*~, 05=(1/2) JEonomCOSay/sina(1+sir? a)/(1— v)[1+sina.{1
It so turns out that for the entire range af/alues corresponding + i ot + ; —1 ;
to the practical values af lying in the interval(0,7/3), the coef- 18ssirf a+48 €08 a(1+12siF o)} 1o sir?
ficient ¢, hovers around the valu@/3) within less than five per- —cog a)(25/12+ 81 cog a+ v sin* « cos ) + (125/36

cent. Accepting this mean value of , relatively much simpler ) ) o
expression is obtained for the contact stresses as indicated below: *(Tnom/ Tnom €0Sa{306 sina(sinf a—cos @) — 15;]1*(17)

o= (213 PYd =Y 2(1— v?)/{(A+B)E}] 23 (14) ;n dimensionless form, the corresponding expressions take the
orm

2= (1/2) JETpomCOsa\sina(1+sir? a)[(1—1?)] 12
X[1+sina{l+18sir a+48cog a(1
+12sirf a)}]" ¥ 19(sir? a—coS «)(25/12+ 81 co$ «
X (cog aj/sinay)}]. + vy Sin® @ c0S 20) + (125/30 (7! Tnom)
Example X cosa{306 sina(sir? a—cog a)— 1512 (18)

For a better appreciation of the influence of various parameterssase 2 Contact Stresses Between Wires in the Second and

on the contact stresses, it is now proposed to take up a particy@firy | aver. In this case, the maximum contact stresses are
example of a three-layered cable with the geometry and the Cgﬁ\'/en by

responding deformation derivative data given as follg23):
R]_: R2: R3: a,;

where
P=Em(FMg—MFp) [FE_{Ar (MRFr))

X(CO§ C(j /Slna])}+ MET:|{AMJm](RJ2/rJ)

3= (13)[E?0on] I 27 sina cosal(1— v?)?]H3d /6
X[1+sina{1+18sir a+48cog a(1+12sirt a)}]™
X [19(sir? a—cog a){cog a+ (1/16)(1+ v; sin* a cos 2u
+1/288 — (125/18( Thom! T nom COSa{1+ 9 sina
X (sir? a—cog a)}]*-. (19)

In dimensionless form, the corresponding expressions take the
form

m;=1, m,=6, mz=12;
a;=ml2, a,=«a(right lay), az=(7m—a) (lang lay;
F.=(1/19[1+ 18 sina(sir? a— v cog a)];
F 3= —(36/99sir” « cosa;
M .= —(36m/125)(sir? a— v coS a)cosy;
M p=(216m/625)[sina cos a+(1/48)sina(1
+ v sin* a cos 2a) + (1/864)/(1+ v)].

It may be pointed out that wires within the second layer are just in L,
contact with their adjacent neighbors in the same layer, however, —co¢ a){cog a+(1/16)(1+ v; sin® @ cos 2o+ 1/288
these contacts are ignored for application of the results of the . .
analysis. In other words, the treatment followed here assumes the (125/18 (oo nom) COSa{1+9 sina(sir?
outside wires to have “slightly” lower diameter than that of the —cod o)} (20)
core.

On substitution of the above data, the following expressions fathere
the normal force per unit length of contact between the core and _ ITE2 13
the wires in the second layer as well as that for the contact for@a = 3/[E" ol
l&;tytgrgap;gr:)tst;fnz%r}tact between the wires of the second and th'rg=[1+ V1= (1—co? al9)sif 2a]2/[ (1 coé al9)si? 2a].

o3=(1/3)[ 27 sina cosal(1—1v?)?]Y3d "Y1+ sina{l
+18sir a+48cog a(1+12sir o)} ] 19(sir?

Qy_3=(macpemcog a sinal2)[1+sina{l+ 18 sirt a Results and Discussion
+48cof a(1+12sir a)}] [ 19(sir? a— v cof ) First, an attempt is made to experimentally test the validity of
i the linear deformation derivative results earlier developed for the
X(25/12+ 81 cog a+ vs sin* o cos 2o) +(125/36 multilayered wire-rope strands under tension and torsion. For this,

. . we take up a particular example of a simple strand with metallic
X (Tnom! Tnom) COS@{306 Sina(si a—v cos' @) =181 ;10 and an adjacent layer of six helical wires as described in the

(15) earlier section on experimental validation of deformation rela-

L, _ : . tions. Its deformation derivative values based on the theoretical
P3=(ma’opemsina cosa)[1+sina{1+ 18 si a+48 cos a analysis are found to be in reasonable agreement with the corre-
X (1412 sirf @)}] [ 19(sir? a— v cof a){cog a+ (1/16) sponding experimer_ltally obtained _results. 'I_'he experimental tests
thus support the validity of the earlier analytical approach propos-

X (14 v; sin* a cos 20) + 1/288 — (125/18 ing the use of suitable approximations based on order-of-
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magnitude considerations while applying Costello’s “lineaportional to the square-root of the rigidity modulus while those
theory” for prediction of deformations in the strands under teramong wires of the adjacent outer layers are proportional to
sion and torsion. [E]¥%. As a consequence, in spite of the lower contact forces
The theoretical analysis subsequently undertaken utilizes thesgolved, the outer layers, especially the third and its inner con-
closed-form deformation derivative results together with Herlgcting layer may suffer higher contact stresses. Interestingly, it
theory of contact stresses in order to develop analytical expregso follows that under “modest” loading of the cables made of
sions for the maximum contact stresses in the cables. The resyligerials like steel which have rather “large” values of the rigid-

Poisson'’s ratio of the cable material does not have much effect or a better assessment of the effect of the various important
o . ! Brameters on rope design, the critical stresses are computed for
the critical stresses. In contrast, the material modulus of elastic & typical three-layered strand with metallic core considered ear-
is an important parameter with considerable influence on the c?{ . Here, the wires of the second and third layers have same helix
tact stresses. For the cables made of material such as steel, u 8@5 ! - . -
ngles but opposite lays. The plots showing the influence of some

“modest” loading, the hike in the stress levels in the contadt " - . .
regions is likely to be rather large. Important design parameters on maximum dimensionless contact

It may be noted that the closer the layer of wires lies to thi€sses in the cables are obtaif€s. 6-8. Figure 6 shows the
core, the higher would be the contact forces induced due to téifect of the helix angle parameteron the nondimensionalized
sion and torsion. Thus, the forces would be highest between §idical stress values when the cables are subjected to pure tensile
core and its adjacent layer and significantly lower on the outdpads as well as the case while under combined tension and tor-
most layer. Yet, the maximum contact stresses on wires in th®n. Of the two stresses, the valuesdof remain significantly
core and the adjacent layer are unlikely to be at the highest leveigher as expected. Their values, however, continually decrease
This happens by virtue of the “line contact” interaction betweems the helix angle increases from 60 to 90 deg for ropes with
these innermost mating layers unlike all other outer layers chaegular lay in the second and lang lay in the third layer. Almost
acterized by “point contacts.” The contact stresses between thinilar behavior is observed as the helix anglelecreases from
core and the adjacent layer of helical wires are found to be prb20 to 90 deg.
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Fig. 6 Effect of a on dimensionless contact stresses
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Fig. 7 Variation of critical stresses as influenced by nominal tensile stress
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Fig. 8 Prediction of the ratio (oo / Thom) for zero critical stresses and for
rotation-constrained case

For a better appreciation on the order of contact stresses the contact forces on the core and its adjacent layer would be
duced in the cables, their values are now obtained in dimensioh&hest, in general, the critical stresses are likely to attain the
form (Fig. 7). As expected, for relatively modest loads, the maxihighest levels in the contacting region on wires between the sec-
mum stressr; induced in the contacting region between the thirdnd and third layers. It is interesting to note that even for the
and the second layer is higher thag, i.e., the stress between themodest loading of cables made of materials like steel with rather
core and its adjacent layer. However, for relatively larger tensilégh values off, the compressive stresses in the region of contact
loads and/or in the presence of significant torsional loads, thietween the wires can attain the ultimate tensile stress levels.
trend gets reversed. Interestingly, both the maximum contactFor cable designs with regular and lang lay in the alternate
stresses turn out to be virtually an order of magnitude higher thayers, the critical stresses are relatively smaller when the helix
the nominal stresses applied. Consequently, even for the modmsgles are close tar/2. Hence such “large” helix angles are
nominal cable stresses, the level of compressive stresses in ltkely to promote longer life-span. In contrast, in the wire rope
interior can reach that of the ultimate tensile strength of the cakdeplications for dissipating energy, the smaller helix angles in the
material. That perhaps provides an explanation for the brokeitinity of + /3 or — /3 that result in larger contact stresses may
inner wires observed in the cables after long use even under mbé-recommended.
est loading.

Interestingly, through a judicious choice of the nominal tensile
stress to torsional stress ratio based on the helix amgteseems Acknowledgment
theoretically possible to achieve a zero contact stress level forT
either of the two cases considered—not both. Figure 8 brings H
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In this paper, the elastic field in an infinite elastic body containing a polyhedral inclusion
with uniform eigenstrains is investigated. Exact solutions are obtained for the stress field
in and around a fully general polyhedron, i.e., an arbitrary bounded region of three-
dimensional space with a piecewise planner boundary. Numerical results are presented
for the stress field and the strain energy for several major polyhedra and the effective
stiffness of a composite with regular polyhedral inhomogeneities. It is found that the
stresses at the center of a polyhedral inclusion with uniaxial eigenstrain do not coincide
with those for a spherical inclusion (Eshelby’s solution) except for dodecahedron and
icosahedron which belong to icosidodeca family, i.e., highly symmetrical structure.

[DOI: 10.1115/1.1362670

Introduction the displacement is first given as a volume integral over the inclu-

L . . ) o sion([2]), which is then transformed to a surface integral over the
The elastic field due to inclusions in an infinitely extended ela%’un‘ace of the inclusion by integration by parts. The resulting

tic med!a has been extens_lvely |nvest|g§1ted_ foIonvmg Eshelby, rface integral is evaluated by subdividing the surface into rect-
pioneering work([1]), and its summary is given in a book by ngular triangleq[15,20). The solutions for strain, stress, and
Mura [2]. However, there have been only a limited number Qtgpelp s tensors will be obtained by analytical differentiation of
analytlc_solutlons for problems of nonelllpsmdal_|ncI_US|ons, Casgfe displacement field. Subsequently, we will calculate the strain
of cuboidal ([3-8]), rectangular([9,10)), and cylindrical (11~ energy of the body by using a numerical integration formula for
14)) shapes. _ three-dimensional simplexel21]). Numerical results will be pre-
Rodin[15] considered a problem of Eshelby’s tensors for pasented for the stress field and the strain energy in a body contain-
lygonal and polyhedral inclusions where the Eshelby’'s tensajgy a polyhedral inclusion. The results of the effective stiffness of
were given as a double or triple integral, which was evaluated By composite with polyhedral inhomogeneities will also be pre-
subdividing the inclusions into two or three-dimensional rectaented.
gular simplexes. He showed an approach to calculate the Eshelafter the publication of our previous papér8]), Rodin[22]
by’s tensor for a polyhedral inclusion without explicit solutionsclaimed that the method to estimate the effective stiffness of a
Rodin [15] and Markenscoff16] proved that polyhedral inclu- composite in the paper contains a serious flaw and hence the re-
sions with constant Eshelby’s tensor do not exist. Lubarda agdits concerning composite stiffness are incorrect. In this paper we
Markenscoff{ 17] showed that the Eshelby propefgonstancy of will show that our method provides still a good approximation to
the stress for uniform eigenstraidoes not hold for any inclusion the stiffness of a composite with polygonal inhomogeneities. The
bounded by a polynomial surface of higher than the second d#egree of accuracy of the present method will be shown to in-
gree, or any inclusion bounded by a nonconvex surface. They atsease as the polygonal inhomogeneity approaches to a circle and
showed that inclusions bounded by segments of two or more diflso, as the stiffness difference between the inhomogeneity and
ferent surfaces are also precluded. Recently, Nozaki and Tapa matrix becomes small. This will be proved numerically by
[18] analyzed the elastic field in a polygonal inclusion in an inficomparison between the solutions based on the present model and
nite body and proposed a method to estimate the effective stiffy the boundary element methGBEM).
ness of a composite with nonellipsoidal inhomogeneities. They
carried out an area integral to obtain the displacement &l Formulation
by subdividing a polygonal region into triangles and differentiate%
the displacement field to obtain the strain and the stress fields2.1 Statement of the Problem. Consider an infinite, elastic,
They noted the special characteristic with a regular polygonal ihnomogeneous and isotropic domdin having arbitrary shaped
clusion. More recently, R{i19] obtained the analytic solution of polyhedral inclusiorf2 with uniform eigenstrair:; in a Cartesian
elastic fields in a plane or half-plane containing an inclusion Qfoordinate systemxg ,X,,X3). The matrix domain is denoted as
arbitrary shape using the techniques of analytical continuation apd- (). The boundary of) (1)) is assumed to be formed by
conformal mapping. faces|Q|, (I=1—N), |Q], being a polygon withvl, =3 vertices.
The present paper is concerned with the solutions for the elastigr each face the outer unit normal |n'|=1 is introduced.
field arising from an arbitrary polyhedral inclusion with uniformly  11,¢ eigenstrain is given some constant value § but van-
distributed eigenstrains in an infinite elastic body. In this PapPeLyas inD — 0. Foerrescribed eigenstraiﬂ] in Q, the resulting

stressoy; is given by
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MECHANICS. Manuscript received by the ASME Applied Mechanics Division, May I J
13, 1999; final revision, April 14, 2000. Editor: L. T. Wheeler. Discussion on thwhereCijkl is the elastic stiffness tensor of the body amdis the
paper should be addressed to the Editor, Professor Lewis T. Wheeler, Departme im i H i i ' B
Mechanical Engineering, University of Houston, Houston, TX 77204-4792, and W’ﬁt‘?hrln Induc_ed by the |n_clus_|on_. Usmg Gre_en S functlﬁﬂ (X
be accepted until four months after final publication of the paper itself in the ASME X ), the displacement field inside and outside(btan be writ-
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Ui(x):*CjkmnsﬁnJ Gjj k(X=x")dx’, 2
Q

wherex is an arbitrary point irD andx’ is a point inside(). To
evaluate the integral, it is convenient to rewrite E2). by inte-
gration by parts. The equation is transformed to

ui(x) _CjkmngﬁnfﬂGij(X_X')nde(X')

N

CjkmnannIE:1 Ni o Gij(x—x")dS(x'), (3
= |

wheredSis the surface element. For isotropic media, the Green’s

function is given ag[2])

1 X
16mu(1—v)|x—x'|

Gij(X—X/)=

Fig. 1 Subdivision of a side of the polyhedron

x| (3—4v)8;+ %

(4)

whereu is the shear modulus; is the Poisson’s ratio, and; is

M,
the Kronecker delta. Substituting E@t) into Eq. (3), we obtain , ,
9 B fnto £ =3 [t +s109), ©)
ui(x):DimnS:;n %) -
M,
where . Ilz(ij):;,Zl [SZIIZJ(ij)_’_Sé(IIZJ(ij))r]’ (10)
Cikmn | B
Dimn:m; nL(3—4v) 811 +157)] (6)  where
Y= ds(x'), (11)
1= f ds(x’) 7 ! f [x=x"]
! \m,|x x| @ T
B (X=X ) (X;—x!) (|'1J)'=J' ds(x’), (12)
TUPI B Ease NS Ko ' |X X'
I3 fﬂl ‘X_Xr|3 ds(x’). (8
X —X{ ) (X; =X
2.2 Subdivision of the Surface of the Polyhedron. To per- 150 = f XX —_ ) ds(x’), (13
form integralsl'1 andl'z(”) , we subdivide the surfaces of a poly- |X X'|
hedron into rectangular triangles. Let nd®y be the orthogonal (X —x) (X, X "
projection ofx onto the facgQ|,, and letC} (3=1,2,... M, : (1500 = '—t—dS( X, (14)
Ci,+1=C}) be a vertex of|Q|, (see Fig. 1 The orthogonal m, X

projection of P, onto the edgeCC},, will be denoted byP.  |n Egs.(9) and(10), s,, s, ands,, s} are the signs of;, (%)’
Using P, as a pivot,|Q|, is now subdivided into pairs of rectan-andlu ), (150)" | respectively, which are determlned by the

gular triangles Ti1, /1), (Ti2,Tiz), - (Tiw ’T'M ) For ex- |5cations of the poink and the rectangular trianglds;, T,; on
ample, the one associated with the edgéJCJH is  which the integrals are defindfil5,20).
(T,;:P,PYCY, T/, :P,PCl. ). Also, we introduce vectors shown At first we perform the integrals in Eqél1) and(13) overT,;.

in Fig. 1 as We introduce new parametefg »,{) defined by
p': initial point x, terminal point P, X' —x=&py+ Yy +ip (0<&m(<1). (15)
p): initial point X, terminal point P!, In Egs.(11)—(14), x" is the point on surface of the polyhedron so
& n, and{ have the following relationship:
Lo . . . |
7)3. initial point x, terminal pointCj, E+pri=1. (16)
ay: initial point P, terminal point P}, Using Eq.(16), we can modify Eq(15) as
by : initial point P}, terminal pointC}, X' —x=¢a)+ nci+p' (0<¢,p<1). a7
c): initial point P,, terminal pointC!, The surface elemertS(x’) is transformed to
N — | al |
). initial point x, terminal pointC, ,, dS(x’) =layl[bj|déd . (18)
; 13 13(ij)
bl.,: initial point P?, terminal pointCl,,, The integrald ;" andl; "’ are reduced to
c).: initial point P,, terminal point C' I'J=f ;dS(x’)=flfl_v;|a'||b'|d§dn
. | e o Jo Tedtacsrp] P
The integrall}, 15" can be expressed as (19)
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dS(x") inside or outside the inclusion when the absolute values of the
vectors are equal to zero.
The elastic strain energy in the infinite domd&ris obtained as

f J'l 7{&@))i+ n(ch)i+(p") i HE aJ +77(CJ) +(p' )it (2)
|§a;|+7ICJ+P|3

1 1
e b dza R ] R e K

i (X=X )(X;=X/) Appendix, which may also be required to calculate the elastic field
gon= |
IJ

[x—x'|°

Using the integral formulas given in the Appendix and the or- 1 .
tho_gona;lity of the vectors, we can perform the above integrals to =- z{cijkl(sklmn— limn)€mnt €5 Va » (28)
arrive al

whereS,,, is the averaged Eshelby’s tengpt8]) defined by

o4+ 1
o= lafog| 2 .

|p| ]+|pI|F|J, (21) _ 1

J Sklmn:V_ Sumn(X) dX, (29)

P =101+ 15+ (15D, (22) -
where the bar over the quantity means the average over the vol-

where ume of the inclusion V).

13(ij) 2(|‘J)J|_|P|J|) |‘))J|_|PI| ) )
(137" )1=(ay)i(ay); EWEN EVEN 3 Response to Rodin’s Question

| | o In our previous papef{18]), we analyzed the elastic field in a
|ay| o b3l +[ | lcille'| F (23) polygonal inclusion and proposed a method to calculate the effec-
|b}|? 9 |b}|2|a)|? 1 tive stiffness of a composite reinforced by nonellipsoidal inhomo-

ol
’ geneities as an extension of Eshelby's equivalent inclusion
1p'|— P} method. However, Rodif22] claimed that the following relation-
IJ(IJ) — s .
(15),= —{(@y)i(ch);+(@h;(ch)i} Taloy ship in our paper does not hold in general except for the case of
J ellipsoidal inclusions and hence our result for composite stiffness
jal [1BY+1l) 1o is incorrect.
i NI AN : :
J Py J Sijki (X) £ (X) = Siji (X) i(X). (30)
1 |b'J| +|7)J| In Eq. (30), x is a point inside the inclusiomi*j(x) is the equiva-
_{(aJ i(p! )i +(a3) (p")i} |a | |pIJ| lent eigenstrain, an8;(x) is the Eshelby’s tensor for a polygo-

nal inclusion. The bar over the quantities means the average over
the volume of inclusion. In this section, we calculate the average
stress

|y [IC'JI+|7)J|

- (0]
|y [bj| Pl

—i|og{ 'l ]
o | To+ [ |
1
(24) e f y(x0dx (31)
EXCEAErEY !

W + W inside several polygonal inhomogeneities (volumeVy, ) by the
JHJ J

method proposed by the authors and the boundary element

(1D = (C!])i(CB)j[ -

|bJ |’)J 1| mgthoql(BEM). Even though Eq(30) does not hold for nonellip-_
X Iog{ ] T FU} {(c'J)i(p')j soidal inclusion in an exact sense, by comparing the two solutions
| J| |b | we will show that Eq(30) for polygonal inclusions will still pro-
EX [+ vide a good e.stim.ate for the composite stiffness, anq be_coming a
+(ch) (P} > Iog[ CHRLE ] better approximation as the number of polygon’s side increases
|cs| [yl Pl and the difference between the stiffness of the inhomogeneity and
o the matrix becomes small.
log 'l _(Pilp); Fy. (25) We consider an infinite bod® with a regular polygonal inho-
|bJ| PEREY 1p'| M mogeneityQ)’ as shown in Fig. 2. In this section, we compute the
In the above equations,; is average stress in tria}ngular, square, pen_tagonal, and hexagonal
' inhomogeneities inscribed to a circle of radausAll regular poly-
|b3l| )l | b |8Y] Ib}| gons are centered at the orighof the Cartesian coordinate sys-
Fy=tan ! V1l (26) tem (X{, X», X3) and one of the vertices is located on theaxis.
o' HaJ| lp ||7)J || Plane strain inx;—X, plane is assumed. Using the method pro-

Integrals (})’ and (51)" in Egs.(9) and(10) are obtained by poseti by thgta_uthgt($18]), the average stress inside the inhomo-

replacing the vectorb}, ¢, ¥, by bl ,, ¢\, 1, ., in Eq.(21) 9ENe!Y 1S obtaned as

and(23)—(26) (see Fig. 1 CMy+C™ (Soyami—| Bmnkl€h » 32
Strain fields can be obtained by differentiating Eg). as = (il ”pq( pamn ™ Lpamn) B i (32)

WhereCIJkI is the elastic stiffness tensor of the mattixy, is the

1((9u| ﬂ) 1 identity tensor,sﬁ is an uniform farfield strain, and;, is a

— — * *
Su(x) 2 X + x; Z(Dlmn,]+DJmn,l)8mn Si]mnsmnv tensor defined by
(27)
H ’ H H | kl— {(C| | )S mn_ ~i mn} 1(Cmnkl mnkl)-
where $my, is the Eshelby’s tensor for a polyhedral inclusion. The J ipa Jpq Pq i (33)
explicit expression o5, is given in the Appendix. The stress
field in D is obtained by substituting E§27) into Eq. (1). In Eq. (33, CifjkI is the stiffness tensor of the inhomogeneity.

To obtain the solutions for the elastic field on the boundary of To solve the above two-dimensional problem by BEM, a finite
the inclusion, we calculate the limiting solutions shown in theize body is treated instead, but the width and height of the body
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Fig. 2 A polygonal inhomogeneity in an infinite body sub-

jected to far-field strain
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Table 1 Comparison of averaged stress
the present

culated by

0,5,/ 0 inside Q' cal-
method and BEM with ETE™

=0.001-1000 and »'=»"=0.3. The result for square is aver-
aged over the rotation angle around the origin.

Fig. 3 Comparison of effective two-dimensional Young's moduli calculated by present method and Jasiuk’s

method ([25]): (a) triangle, (b) square, (c) pentagon, (d) hexagon. »'=»"=0.3 for present method and

Jasiuk’s method.
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E'JE" Method| Triangle ( a?/g:laag{:d) Pentagon Hexagon
0,001 Present | 3.292x107 | 3.303x107 | 3.292x107 | 3.292x107°
’ BEM | 4.991x107° | 3.893x10™ | 3.582x107 | 3.455x107
001 Present | 3.225x107 | 3.235x107 | 3.225x107 | 3.225x107?
’ BEM | 4.748x107 | 3.774x107 | 3.491x107 | 3.375x107?
o1 Present | 2.678 107 | 2.683x10™" | 2.678x107" | 2.678x10™"
' BEM | 3.291x10™ | 2.923x10™" | 2.802x10™" | 2.749x10™'
05 Present | 7.661x107" | 7.663x10™" | 7.661x10™" | 7.661x10™"
' BEM | 7.826x10™ | 7.731x10™" | 7.698x10™" | 7.683 %10
) Present 1.181 1.181 1.181 1.181
BEM 1.200 1.189 1.185 1.183
10 Present 1.383 1.384 1.383 1.383
BEM 1.515 1.433 1,408 1.335
100 Present 1.438 1.440 1.438 1.438
BEM 1.664 1.518 1.477 1.460
Present 1.444 1.446 1.444 1.444
1000
BEM 1.688 1.528 1.484 1.466
1.2
1
.
——— .\.-*
0.8 |- .‘;"\‘_;5 —
& Bl
o
0.6 | Square (averaged)
0.4 Jasiuk(1995): Rigid inclusion
' - ——— Present method: E//E"=1000
0.2 | — — = Jasiuk(1995): Hole
[ — . — - Present method: E//E"=0.001
0 L
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(d)
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are taken to be 100 times the radius of the circumcircle of the Table 2 Material properties of SiC particle and Al matrix
regular polygon where sharp corners are replaced by sufficiently Material | Cu(A+24) Con(t)
small arcs. The radius of the arc is taken to be 0.01 times the
radius of circumcircle of the regular polygons. This approxima-
tion gives sufficient accuracy. The boundary element models have
totals of 234(triangle model, 290 (square modg) 378 (pentagon
o) 0 e modaies of e o SUbreGon WSy ar shown n Tabe 2. W assume a polyredal nclsion cen-
' red at the origirD of the Cartesian coordinate system. The five

:V%?glsé gtlrjsgsra&% 323{3:?&1 a:)el ucs)’ra\diﬁtlg(i:ie:rr:eI:s\,/\?vlﬁsggr:/eor{i gular polyhedra shown in Fig. 4 are considered for the stress and
g ’ polyg 9 (f effective stiffness calculations. Furthermore, three inclusions

are the center and two adjacent vertices. Then an integration fQe=_~ _. : i " .
mula for two-dimensional simplexes by Hammer et[@1] is dFicosidodeca family shown in Fig. 5 are additionally considered

used. In each triangle, the number of integration points is 12.

Al 110.5 (GPa) 26.5 (GPa)
SiC 474.2 (GPa) 188.1 (GPa)

Hereafter, we assume that the infinite body is subjected to a X3 X3
farfield strain €7;, €15, £50)=(0, 0,£0). Table 1 presents the
values of the average stress, obtained by the present method
and BEM for the differentE’/E™ ratio, whereEf, E™ are the
Young’'s modulus of the inhomogeneity and the matrix. The Pois-
son’s ratios of the inhomogeneity and the matrix are seb'to
=1v"=0.3. The average stress is normalized dy=e,E™(1
—vM/(1-v"-2(»™)?), where oy, is the corresponding stress  , % X
component along the,-direction for the given far-field strain
(31, €35, £59)=(0, 0,g0). Our solutions and those obtained by Tetrahedron Hexahedron (Cube)

BEM disagree. However, it can be seen that the difference is s X3
becoming smaller as the number of polygon’s side increases. The

difference is also becoming smaller as the difference betien

and E™ becomes small. Thus we can conclude that our method :

will give a practically reasonable result for the effective stiffness

of a composite reinforced by polygonal inhomogeneities, espe- <5

cially for a composite having stiff matrix such as a metal matrix x x i
composite or a ceramic matrix composite. Here, we should com- v X2 ! \’ %

ment that a square is not an isotropic shdf8,23—-25). To

obtain the average values over rotation angle from 0 deg, to 90 Octahedron X Dodecahedron

deg, we calculated the averages ovef2leg, 45 dep 4 (0 deg,

22.5 deg, 45 deg, 67.5 ded (0 deg, 11.25 deg,", 78.75 degy

and 16(0 deg, 5.625 deg,-, 84.375 degpositions. It was con-

firmed that all results are the same to 14 figures for the present

method and 6 figures for BEM. Hence we concluded that we can

adopt the average over two positions 0 deg and 45 deg as the

average over rotation angle from 0 deg to 90 deg. In Table 1, the x 1/ ¥~ x,
=

result for the square is obtained by averaging over two posi-
tions of rotation angle.

Next, we compare the effective two-dimensional Young's Icosahedron
modulus €°) of a body with dilute distribution of polygonal ) ) )
holes or rigid inclusions calculated by Jasiuk’'s metli#,25]) Fig. 4 Regular polyhedral inclusions

and that of a body with dilute distribution of very compliant
(Ef/E™=0.001) or very stiff E//E™=1000) inhomogeneities
calculated by the present methd8]):

Cin= iTkI+f(C'f —Cl AN

ijmn ijmn
Al =115k + Sijmn(Cinpd~ H(Cha—Chga)} 5 (34)

The Poisson’s ratios are again setife= v™=0.3. Figures Ga)—

(d) show the results for low volume fractiorf€0.1) of holes,
rigid inclusions, and inhomogeneities. The difference between the
two methods is small. In the calculation for square, we used av-
erageS;;, over two positions of rotation angle 0 deg and 45 deg.

4 Numerical Results and Discussion for Polyhedral In-
clusions

Numerical results of the stress distribution, the elastic strain
energy for a body containing a polyhedral inclusion and the effec-
tive stiffness of a composite with polyhedral inhomogeneities are
shown in this section. The Poisson’s ratio of the badis as-
sumed to be 0.3 for the stress and the strain energy calculations Icosidodecahedron
and an SiC particle-reinforced Al matrix composite is chosen for
the effective stiffness calculation. Material properties of SiC andig. 5 Polyhedral inclusions belonging to icosidodeca family
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Fig. 6 Variation of normalized stress field in a polyhedral inclusion with a dilatational eigenstrain (&5

=¢£,4;;) along a line from the center through a vertex: (a) o, : normal stress on a plane normal to the line. (bﬁ
o7 normal stress on a plane parallel to the line. d=1 indicates the position of the vertex.

for the strain energy calculation. First, we examined the stresgesses on a plane normal and parallel to the line, respectively,
distribution for the cubic inclusion examined by CHié] and andE is the Young’'s modulus. Horizontal axis is normalized by
confirmed that our results coincide with his. the distance from the center to a vertex, hedeel indicates the
Figures 6a) and (b) show the distributions of the normalizedposition of the vertex. These figures show that the stresses have
stressesr; /(Egp) and o1/(Eg,), respectively, inside and out- the logarithmic singularity at vertices of the polyhedra. Figures
side inclusion along a line from the center through a vertex forda) and (b) show the distributions of the stresses alongaxis
dilatational eigenstrainsqkj:soz‘)‘ij). o, and o are the normal for a uniaxial eigenstraine};=e, and other components are
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o L
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Fig. 7 Variation of normalized stress field in polyhedral inclusions with a uniaxial eigenstrain along Xq-axis,
ef1=¢g9: () o =0 . (b) or: normal stress on a plane parallel to the  x;-axis. d=1 indicates the position of the

vertex.
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Table 3 Normalized strain energy W*=W*/(g2EV,) in anin-  hedron with a dilatational eigenstrain are the same as the sphere.

finite body with a polyhedral inclusion for a dilatational eigen- On the other hand, the strain energies for the uniaxial eigenstrain
strain (e} =g,4;) and a uniaxial eigenstrain along  x;-axis (e7; are different but those for the dodecahedron, icosahedron, trun-
=¢£g) cated icosahedron, truncated dodecahedron, and icosidodecahe-
— dron are the same as the sphere’s. We note that they belong to the
Inclusion shape — w — icosidodeca family which has the highly symmetrical structure.
Dilatational Uniaxial This finding is seems to be relevant to the fact that the values of
Sphere 1.42857 0.293040 stress at the center of these polyhedra are the same as those of the
Tetrahedron 1.42857 0.302871 zphe)re_f_she.e.Figs. @) and (bb) for theth(f:Iecz(aihE;)dran aISd.icosahe-
ron). This is interesting because the fam : Buckminster-
Hexahedron (cube) 1.42857 0-285081 fullerene has the truncated icosahedral struct[26]) and most
Octahedron 1.42857 0287812 quasi-crystals have icosahedral ph4£¥]).
Dodecahedron 1.42857 0.293040 Finally, we calculate stiffness of an SiC particle-reinforced Al
Icosahedron 1.42857 0.293040 composite by the Mori-Tanaka methdd 8,28):
Truncated icosahedron 1.42857 0.293040 _ f MT
Cik=Cijki + F(Cijmn— Ciimn) Amnki»
Truncated dodecahedron 1.42857 0.293040 ) _
Icosidodecahedron 1.42857 0.293040 AN = A (L= ) it FAT - (35)

As seen in Table 3, strain energies of the polyhedra belonging to
the icosidodeca family are the same as the sphere’s. On the other
zero. In this case, we take one vertex of the regular polyhedra &and, strain energies of tetrahedron, hexahedrahe, and octa-
thex,-axis, soo_ and o are invariant for the rotation around thehedron vary with their orientatiotthe numerical results are omit-
x;-axis. Similar to the case of dilatational eigenstrain, it is note@d. This means that polyhedra belonging to the icosidodeca fam-
here that the stresses have the logarithmic singularity at the vidy-are the isotropic shapes and tetrahedron, hexahegnaiog,
tex. However, the values of stresses at the center do not coincitfgl octahedron are the anisotropic shapes. Therefore, for these
with the sphere except for the dodecahedron and the icosaheditbrge shapes, averaging over the orientation is needed to calculate
It can be seen that the stress distributions inside the inclusion tdhg isotropic stiffness. However, in the case of polyhedra, it is
to be flat(or constantas the shape of the inclusion approaches w@fficult to calculate the average values. Thus, in this example, we
the sphere through Figs. 6 and 7. assume that all inhomogeneities’ orientations are the same: we
To obtain the strain energy, we have to evaluate the averag@fe one vertex of the regular polyhedra on theaxis. So result-
Eshelby’s tensor, Eq29) numerically. For this purpose, we di- Ing stiffness tensors have weak anisotropy in the case of tetrahe-
vide the polyhedron into three-dimensional simplexes whose vélal, hexahedralcubic), and octahedral inhomogeneities. We con-
tices are denoted by a vertex, a midedge, a midface, and the cefgteture that if we can averadgg; over orientation of the above
O. Then a numerical integration formula by Hammer et[2L] three polyhedra, the orientation-dependent parSgf will be
are used. The number of the integration points inside a simplexdanceled like the two-dimensional polygon cdf29]) and we
15. Table 3 shows normalized strain enekw:W*/(ngVQ) will obtain the sameS;j,; as a sphere. Figurega§ and (b) show
for an infinite body with a polyhedral inclusion with a dilatationakhe variation of the stiffnes€$,,, and C$,,, versus volume frac-
eigenstrain £ =¢,4;;) and a uniaxial eigenstraiteT;=¢, and tion of the particle. It can be seen that the effect of particle shape
other components are zerd he strain energies for all the poly-is comparatively small, thus practically, use of a sphere for pre-
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Fig. 8 Effective stiffness of SiC-Al composite versus volume fraction of inhomogeneities f: (@) C5111, (b) Clopn
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diction of the stiffness of a composite with regular polyhedral X
inhomogeneities may be justified as a good approximation. f — dx
(x2+p?)yJaxi+c
Appendix
Integral Formulas.
1 tan? ax‘+c (c<ap?)
—tan '\/—— ,
f Iog|2ax+b+2\/ ax®+bx+c)| Vap?—c ap’-c
Jax? +bx+c \/_ =
ax?+c+Jc—ap? (c>ap?)
> Al ]
(a>0), (A1) 2Jc—ap? g JaxZic—Jo—_ap
1 2(2ax+b) o (A6)
(ax®+bx+c)%? dx= (4ac—b?)\axe+bx+c’ (A2) Explicit Expression of the Eshelby’s Tensor.
f X q 2(bx+2c) A3)
X:
(ax’+bx+c)¥? b?—4ac)Jax’+bx+c’ 1
( ) SijngE(Dimn,j"'Djmn,i) (A7)
x2 e (2b%>—4ac)x+2bc
(ax’+bx+c)¥ a(4ac—b?)JaxZ+bx+c
In Eq. (A7),
1
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ava N I 1(ik)
Ciimn aly  aly
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2\a(ax?+bx+c)| (a>0) Dimn, = o (1 v).E n| (3— 4”)5'kax, ;
(A4)
J ffd
—————————=0uX 1J
C aly
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1 xyap —
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2pyap’—c |xyap?—c—pyax’+c
(A5)  wheredl}/ax; is
|
Ay Rk N L Rk PR T |
a_xl_—|a;||j|09 T +ay] |b|3|+|'})3| - |le| +|P|,jF|J+|P|F|J,j- (A9)
JF
F”'J:axu £ 4§20 4 §L0) (A10)
i
1) (b5 1751+ B3l 1%l pl et 851 = (b3l ¥l ('] s 8l + o'l )
[p'[7]ab] >+ [3|*[ %]
(3) (1B 1@l + [blladl ) '] 4l + b3l @l (L]l 72l + el 9 ) (AL)
2 10?1 3]+ | bh|* &)
0] 1b3] 2
3 |CI|2 ’
J
andd15(/ax; is given by
a1y D a a
= (ik) 1 13(k) 7 13(ik)
ox] axj(lz )1t 3Xi(|2 Jat axj(lz )3, (A12)
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(A15) by replacing the vectors related wiff); by those related

with T/ ay o3+ %0 [ e |b5| Ll
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Lyapunov Exponents and Moment
Lyapunov Exponents of a
w-c.xie | Two-Dimensional Near-Nilpotent

Associate Professor,
Solid Mechanics Division, S t
Faculty of Engineering, vs e m
University of Waterloo,
Waterloo, ON N2L 3G1, The Lyapunov exponents and moment Lyapunov exponents of a near-nilpotent system
Canada under stochastic parametric excitation are studied. The system considered is the linear-
ized system of a two-dimensional nonlinear system exhibiting a pitchfork bifurcation. The
effect of stochastic perturbation in the vicinity of static pitchfork bifurcation is investi-
gated. Approximate analytical results of Lyapunov exponent are obtained. The eigenvalue
problem for the moment Lyapunov exponent is converted to a two-point boundary value
problem, which is solved numerically by the method of relaxation.
[DOI: 10.1115/1.1364491

1 Introduction bifurcation is in accord with the concept of bifurcation of the

rresponding deterministic system when the stochastic perturba-

n is set to zero.

A different criterion has been adopted by many physidist®

ased on the change in the form of the stationary probability den-

. . X ; . ity function of the system response. A stochastic phenomenologi-

nondimensional second-order differential equation of the form "o p i rcation is said to occur when this probability density
1) function undergoes a qualitative change from a unimodal to a

q+2B89—[yo+o&(t)]g+ 893=0
a+289-[yot o]+ og ' bimodal or multimodal density function. The value of the bifur-

whereq is the generalized coordinatg the damping constany,, cation parameter at which such a transition in the probability den-
and o loading and fluctuation paramete#sa constant depending Sity function occurs has been showf2]) to be related to the
on the geometry of the system, ag¢t) a unit Gaussian white nontrivial zero of thepth moment Lyapunov exponent of the so-
noise process with zero mean. In the absence of stochastic fllution of system(2) defined ag[3])
tuation, i.e., whenr=0, as the loading parametey is increased
from negative to positive values, the system undergoes a pitchfork 1
bifurcation from the trivial equilibrium configuration into one of Aq(p)=lim —log Ellla([], (4)
the two symmetric nontrivial equilibrium configurations. e
It is of practical interest to study the shift in the point of bifur-
cation as a result of the small stochastic perturbation to the aghereE[ -] denotes expected value. The valueAof(p) charac-
plied load or end displacement. This can be done by examinifgjizes thepth moment stability of systert@). The pth moment
the stability of the trivial solution of the linearized equation ~ Lyapunov exponend q(p) is a convex analytic function ip with
) ) Aq4(0)=0, A(;(O):the largest Lyapunov exponemnty. If p
q+2B89q—[yo+ adé&(t)]q=0. (2)  =6(y0)#0 is the nontrivial zero of\4(p), i.e., A4(8)=0, then
the valuey§ at which P-bifurcation occurs satisfies the condition
%?y8)=—d, whered=2 is the dimension of syster®). The
value § is called the stability index.
The concepts of using the Lyapunov exponents and moment
1 Lyapunov exponents in the study of bifurcations in stochastically
im T logllq(t)]], (3) perturbed dynamical systems were presentdfiij). To study the
—o dynamical effect of stochastic perturbation in the bifurcation of
. - ) system(1), it is important to determine the Lyapunov exponents
whereq(t)={q(t),a(t)}" and||-| denotes a suitable norm. Theang moment Lyapunov exponents of the linear syst2m
trivial solution is stable with probability one if the largest When | y,| is finite andy,<0, by applying the time scaling
Lygpunov exponent is negative, whereas it is gnstab_lg with prol;—v/_—yot' Eg. (2) can be simplified as
ability one if the largest Lyapunov exponent is positive. A dy-
namical orD-bifurcation from the trivial solution occurs when the b AT, —
largest Lyapunov exponent vanishes. The corresponding value of q"+2pq +[1+on(1)]q=0 ®)
vo gives the point ofD-bifurcation. This concept of stochastic

Investigations of the dynamic stability of elastic systems, suiclli
as the transverse vibration of columns and flat plates under r

domly fluctuating axial loading or end displacement, frequentl
lead to the study of the bifurcation behavior of the solution of

The Lyapunov exponents, which characterize the average ex
nential rate of growth of the solutions of systé for t large, are
defined as

o=
t

where=B(— v,) Y2 o=0(— y,) " ¥ 7(7 is a unit Gaussian
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The Lyapunov exponents and moment Lyapunov exponents of Xy X,
system (5) have been studied by many researchers, see e.g., W=COS¢, Wzsm@,
([5,6).

When|y,| is small, the above time scaling cannot be appliedthere|X| is the Euclidean norm oX, and denote
and the Lyapunov exponents and moment Lyapunov exponents cos sin
obtained for systenb) are not applicable to systef®). However, 5(¢):{ ) ‘DJ, So)= ¢ ]
this case is of particular importance in the studies of the effect of sing —COoSg
small stochastic perturba’[ion in the dynamical bifurcations, Whlqh is well known ([3,9]) that the moment Lyapunov exponent
is expected to occur in the vicinity of the static pitchfork bifurcap , (p) of system(10) is the principal simple eigenvalue of the

tion, i.e., 7=0. infinitesimal operator,,
In this paper, the Lyapunov exponents and moment Lyapunov
exponents of syster?) are studied for the case tHat| is small. Lpf(e.p)=Ax(P)t(¢.p),

Note that the nonlinear term in E}) is not used in the remaining heref(p,p) is a m-periodic function and
of this paper; it only serves as a motivational example. The

Lyapunov exponents and moment Lyapunov exponents obtained " T T
are for the linear systert®). A(<P)=i21 Ais(@)s (@A,

ai(@)=s"(p)Ais(p), Bi(e)=8(@)Ais(¢), i=01,...m,
2 Formulation

m
1
For the linear systen{2) under stochastic perturbation, the Q(‘P):“0(90)+§tr[A(‘P)]_i21 af(e),
damping term can be removed by applying the transformagion B

=xe P, which results in , m ,
')'(+|:7+0'§(t)]X:0 (6) k(ﬁp):; ﬁi(ﬁp),
wherey=— y,— 2. Lettingx; =X, X,=X, Eq.(6) may be writ- m
ten in the form of state equations b(e,p)=—Bo(®)+(1—p)>, ai(¢)Bi(¢),
: =1
X1=Xy,
_ b ) Lom
Xe= = yXa~ oXad(D). Cle.p)=PQle)+ 5P22 al(e),
=1

Following Ariarathnam and Xig7] and introducing the scaling
X1=Y1, Xo=0%y,, y=0y, Egs.(7) become

y1=0"1y,,
Vo= — o2 ey, — ot Aty £(1). in which the prime stands for differentiation with respecttd-or
system(8),

For the right-hand sides of both equations to have comparable

1
Lof(e,p)= 5kz(@)f”(¢.p)+b(<P,p)f’(<P,p)+c(¢‘p)f(<P.p),

influence, it is required that“t= g%~ “1=¢, ¢*~“1=g2 where x|Vl A 0 e A= 0 (11)
¢ is a small quantity, which leads ta;=2/3, a,=4/3, ande Ty’ o l-¢y 0] 17 g2 gf
_ 23
o Hence and it is easy to show that the moment Lyapunov exponggp)
dy;=ey,dt, ®) is the principal simple eigenvalue of the following system:
dy,=—eyy, dt—e?y, dw, 1 " . ,
et 508 ¢f"(9,p)+[psing cos e—Fy(@)]f'(¢,p)
whereW(t) is the unit Wiener process.
It is easy to show that the Lyapunov exponents and the moment _A
Lyapunov exponents of systerf®), (6), and(8) are related as +pFi(e)f(e.p)=Ay(p)f(e.p), (12)
where
)\q:_18+)\xv Aq(p):_pB+Ax(p): 1
M=Ny, Adp)=A(p), Fi(¢)=(1=7%)sing cose+ 5 cos’ g[cos ¢+ (p—1)sir’ ¢],
hence - .
Fo(¢@)=Ssirf o+ 5 cog ¢+ sine cos ¢,
Ng=—B+Xy. Ag(p)=—pB+A(p). © g
It is well known that, to unfold a nilpotent singularity, two - .
unfolding parameters are needed. In this problem, the damping Ay(p)=eAy(p)= 0o Ay(p). (13)
constan{B and the loading parametet, are the unfolding param- The Lyapunov exponent is then given by
eters. From the scaling, it is seen thais of the order ofs* or R ) i
2 H 2/3 H
&2. From Egs.(9) and (23), B is of ttlg ordezr ofa?? or ¢. Since A(p)=lim y(P _ 52 y(p)| (19)
or &°.

v=—1y0— B2, 7y, is of the order ofo

o P dp |, _,
In general, consider the following two-dimensional'sttinear o i p=0 )
stochastic system It is important to note that, although the small tesrappears in

system(8), it does not appear in the eigenvalue problétd).
Hence, the method of perturbation cannot be applied and the dif-
dX=AoX dt+z AXdw, (10) ficulty in solving Eq.(12) analytically is increased significantly.
=1 Furthermore, it has been showjri0]) that the exact value of
whereX={X;,X,}T, A;, i=0,1,...m, are 2<2 matrices, and System(6) when =0 andy,=0, is \,=0.2893L", It is there-
W, i=1,2,...m, are independent unit Wiener processes. Appliore expected that, in the vicinity af=0, \, varies ass?®. Equa-
the Khasminskii transformatio(8]) tion (14) certainly conforms with this expectation.

m
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The eigenvalue problenil2) for the pth moment Lyapunov nometric terms sinkp and cos R, k=0,1, . . . ,results in a sys-
exponent can also be derived using Wedig's apprdfth|). In- tem of infinitely many homogeneous linear equations for the un-
troduce the polar coordinates,(p) asy,=acose, y,=asing, known coefficientaly, uy, vy, k=12, ...,
and define gth normP=aP. The Itoequations folP andg can - - -

be found by If¢s lemma ap—Ay, an ag ap ag (o)
dP=epPF(¢)dt—eY?pP sin cosedW, 15 ajo ay—Ay, ay arp ap; | U
12 (15) u pY v _ A u v o
de=—eF,(p)dt—e¥?cod pdW. 10 11 by—Ay by 12 \
Apply a linear stochastic transformation az ap ay ap—Ay ap || U
1 1 u bu bv bU v A e [ 2]
S=T(e)P, P=T Y g)S, —zm=e=;m R TR TR Tm :
The Ito equation for the nevath norm procesSis given by, from (20)
Ito’s lemma, The existence of nontrivial solution requires that the determinant
1 of the coefficient matrix be equal to zero, from which the eigen-
dS=¢ Ecoé‘ oT"(@)+[psing cos ¢—F,(0)]T (@) value A,(p) can be obtained in principle.
In practice, only a finite number of terms is considered to obtain
+pFl<¢>T<<p>] Pdt—e"4cod oT'(¢) (19, To.p) ' taken as Tolows: ) 1 NSiead oTEG
+sing coseT(¢)]PAW. (16) «

f(o,p)=up+ (ug cos Ko +uvy sin ko), (21)
For bounded and nonsingular transformatio(y), both pro- 0 kgl : :
cesses and S are expected to have the same stability behavior,

Therefore,T(¢) is chosen so that the drift term of the Idiffer- system(20) is runcated to a set ofk2+1 homogeneous linear

; . equations forug, Uy, vq, ...,Ug, vk. TO Obtain nontrivial so-
ential Eq.(16) is independent of the phase processso that lutions, the determinant is set to zero to yield an algebraic equa-
dS=ASdt+e’Sg(¢)dW. (17)  tion of degree K+1 for A{(p)

Comparing Egs(16) and (17), it is seen that such a transforma- k) 1 (K)q2k+1 A(OF A (K)72K 1 ... 1+ A(K)AK) 1 A(K)
tion T(¢) is given by the following equation: k[ Ay 1T T Ay [A ] e ray A +ap = 0.

(22)

1
S[ECOS? ¢T"(¢)+[psing cos o—F(¢)]T'(¢) 3 Lyapunov Exponents

1 1 Equation(22) can be employed to determine tk¢h-order ap-

=AT(g), —Ewscpszw, (18) proximation Ay ) of the Lyapunov exponenh easily. Since

A y(P)=0(p) asp—>0 [Ay(p)]k—o(p) for k> 1. Dividing equa-

which defines an eigenvalue problem for a second-order differem)n (22) by p, taking the limitp— 0, and using Eq(14) results in
tial operator withT(¢) as the unknown eigenfunction amdthe

associated eigenvalue. From Efj7), the eigenvalué\ is seen to
be the Lyapunov exponent of thgh moment, i.e. A=A (p).

+pFi(e)T(e@)

. AR (p)
(K)_— 213y (K)_ _2/3; y
N =oTN =0 lim

Employing Eq.(13), Eq. (18) becomes Eq(12). p=0
To solve Eq.(12), consider a Fourier series expansion of the ag@ NK) 5273
eigenfunctionf(¢,p) in the form =— B lm— = — —— . 23
g (¢.p) ! o Mpa D™ 16 (23)
f((p,p):uo+2 (uy cos Xo+uv sin 2ke), (19) The above calculations can be easily manipulated by a symbolic

computation software such daple Because of the limitation of

since the coefficients in E¢12) are periodic with periodr. Sub- the space\{? and\{® are given in the following equation and
stituting Eq.(19) into (12), equating the coefficients of like trigo- N9 andD®? are presented in Appendix A,

N o?3 9807+ 1016y + 3828)%— 384y°+ 969"
Y 716 2313+ 2544y + 22482+ 96073+ 14474

(24)
NCE o2/ 204505+ 95464y + 1347482+ 17920,°+ 1283%/*— 768)°+ 128)°
Y 716 62329+ 94768+ 907282+ 45248y°+ 17808, + 3584y°+ 256y°

To check the accuracy of the Lyapunov expone)n@@ ob- does not necessary increase the accuracy of the approximation,
tained, )\ )\5 213 for the nilpotent system, i.e=0 andy, such as the cases f&r=4, 5, and 6. However, it is usually true
=0in Eq (6), which are obtained by setting=0 in Eq.(23), are that a better approximation can be obtained when more terms are
compared with the exact valug,=0.2893b% obtained in Ari- retained in Eq(21).
aratnam and Xi¢10]. The results are presented in Table 1. For a near-nilpotent system, i.@&,and y, small in system(2),

From Table 1, it is noted that an increase in the oifidsy 1  which is an important case in the study of the dynamic effect of
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Table 1 Comparison of the Lyapunov exponents for the nilpo- for yy. The results are shown in Fig. 2 for different values of

tent system damping coefficieng and K =10.
K 1 > 3 2 5 Using the numerical scheme proposed by W¢dRgj, for given
_ values of and o, the dynamic bifurcation poinjzg satisfies the
Ao 0.375 026500  0.29531  0.28957  0.28803 condition A,=0. The numerical results are shown in Figs. 3 to-
%eror  29.62 8.40 2.07 0.089 044 gether with those obtained from E(5) with K=10. It can be
K 6 7 8 ) 0 seen that bot_h results agree quite well. _ -

The numerical scheme proposed by Weldig] has difficulties
A 0.28999  0.28918  0.28923  0.28937  0.28930in determining the Lyapunov exponents in the vicinity gf=0
% error 0.24 0.043 0.026 0.020 0.0036 ando=0. However, this region is smaller than the invalid region

of the analytical results. In syste(8), the parametey should be

a small quantity, i.eyo+ 8% o~ *3<1. Hence, for the analytical
results to be valid, it is required th@— o*3< y,< g%+ o** or
stochastic noise in the vicinity of the static pitchfork bifurcationg>|y,+ 82]%%. By comparing the analytical results with those of
Eq. (23) gives an approximate result of the Lyapunov exponemumerical simulation, it is observed thator ¢ does not have to
Ay . The Lyapunov exponerx, of system(2) can also be easily be small. In fact, the larger the value @fthe smaller the value of
determined using a numerical scheme proposed by Wedlj 7, leading to a better convergence of the re$2®).

For the purpose of comparison, the Lyapunov exponents from thein the static casg8=0 ando=0, the system undergoes a pitch-
analytical approximate result®3) with K= 10 are shown in Figs. fork bifurcation wheny, is increased from negative to positive
1 along with those obtained from the numerical simulation. It cayalues, or static bifurcation occurs @4=0. For dynamic bifur-
be seen that both results agree extremely well. cation, it is observed from Figs. 2 that, in the presence of damp-

_The point of dynamic bifurcationg as a function of the inten- ing, the dynamic bifurcation is delayed under the perturbation of
sity of noise perturbation can be easily obtained by solving thega intensity noiséyg is shifted to the right whereas the dy-
equation 213 \(K) [ 2 2 namic bifurcation is advance(dxg’ is shifted to the leftwhen the

)\(K): _ (& N (y) S 70+B

; B+ I D(T(S/) =0, y=- — (25) intensity of the noise is large.
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Fig. 3 Points of dynamic bifurcation

4 Moment Lyapunov Exponents

WhenK =0, i.e., when Eq(19) is taken asf(¢,p)=uq, EQ.
(20) becomes

[a%— Ay(p)]=0,

Y1=Ya2,

!

2
yz=m{[F2(¢)* psing cos ¢ly,—pFi(¢)y1+Yiys},
(27)

y3=0.

Since f(¢,p) is a m-periodic function, the domain of can be
chosen as—1/27<¢<1/2m, as in EqQ.(18). When ¢—*1/2m7,
cose—0 and sinp—=*1. Hence, at the boundary poings==+1/
27, the eigenvalue problerfi2) becomes

f!

*-m,p

- 1
5 :—Ay(p)f(izw,p).

Hence the boundary conditions are

_ 1 Y2=—YsY1,
at o= 57 yi=c, (28)
1 Y2= ~Y3Y1,
at o= 57 [ yi=c, (29)

wherec is a constant to be determined. Note that there are four
boundary conditions in Eq$28) and (29), because the two con-
ditions ¢(— 1/27r) =c and ¢(1/27) = ¢ are equivalent to the con-
dition of periodicity ¢(—1/2m)= o(1/27).

The method of relaxation can be applied to solve the two-point
boundary value problen27)—(29). The method of relaxation is
advantageous when studying the variation of the moment
Lyapunov exponent with the change of a parameter, since relax-
ation rewards a good initial guess with rapid convergence and the
previous solution should be a good initial guess when the param-
eter is changed only slightly. Following the procedure as de-
scribed in Appendix B, discretize the domain @finto M grid
points ¢,=-—127+(m—21)h, m=12,... M, where h
=a/(M—1). At the grid pointse,, ¢z, ...,pn, the ordinary
differential Eqgs.(27) are replaced by the finite difference equa-
tions:

El,mE Yim™ Yim-1— hVZ,m= 0,

2h _ R -
EZ,mEyZ,m_ Yom-1— m{[ Fo(em) —psinep, cos’ ‘Pm]yz,m
m
- pFl(am)Vl,m‘FVl,mV&m}v (30)

E:%,mE Yam— Yam-11

where aly=p(p+2)/16. Hence, the zeroth-order approximatiotvhereem="12(em+ ¢m-1), ¥im=12(im*Yim 1), i=1, 2, 3.

of the moment Lyapunov exponent is

A0 ny— u:i
A (p)=a50=15P(P+2), (26)

or

- 1
AG(p)=—pB+ AP (p)o?*= —pB+ Tep(p+2) 0™

WhenK=1, the Eq.(22) for A{!(p) is a cubic equation, the
real root of which can be easily obtained. However, because the
expression is quite complicated and the accuracy of the result i

not very high, it is not presented here. A
In principle, theKth-order approximatiom{(p) of the pth

At the first boundary pointp=—1/27, there are two boundary

conditions. From Eqs28),

Ez1=Y211TY1,1¥3:=0,
Es1=Yy1,—¢c=0.

(1)

At the second boundary poit=1/27, there are also two bound-

ary conditions. From Eqg29),
Eimr1=YomtYimYam=0,

Eom+1=Y1im—C=0.
Sl'he 3M correctiongdy; o, i=1,2,3,m=1,2,... M, and the

(32

undetermined constaitare given by the solution of theN8+ 1
linear

algebraic Egs.(46)—(48) with n;=n,=2. For m

moment Lyapunov exponent,(p) can be obtained by solving =2,3,... M, there are 3§ —1) equations in(46),

Eq. (22). However, the analytical solution of E(R2) is not pos-

sible for K>2; numerical solution has to be resorted to.

The eigenvalue problertil2) can be converted to a two-point

boundary value problem(4l) of Appendix B. Letting y,

=1(¢.p), Y2=1'(¢.p), Y3=Ay, Eq.(12) can be written in the

following standard form:

Journal of Applied Mechanics

1
ST=-1, ST2=S?5=—§h, STs=S1=0, S[,=1,

Srzn,lz T cod am [— pFl(Em) +73,m] = 521,4,
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AL P —
S22=71 cod o,

h

m -
S23 cos o,

S%,lz Y31,

Vl,m: Sg],ev

33”le 5'3“'2: 321’4: 5?,5: 0, sf;s: -1,
For the first boundary point, there are two equation§&4in,

S%,zz 1, S%,sz Y11,

Sie=1.

S%,l: 1, S%,zz 0, S%,sz 0,

(48),
ngl:}’&rvl ) Sg/,lzﬂz 1, Sg’,l;l:yl,m )
Siriog, s¥riog, shit-o.

By using the zeroth approximatiaﬁ(yo)(p): p(p+2)/16 as an

[F2(am) Y Sinam CO§ am] = S?,Si 2,

(33)

(34)

(39)
and for the second boundary point, there are two equations

(36)

(37)

initial guess, solving the linear algebraic E¢$6)—(48) for Ay; ,
and updatingy; ., iteratively, an approximate value of,(p)

=Y is obtained. The moment Lyapunov exponap(p) is then

determined as

Ag(p)=—pB+Ay(p)a?
Numerical results of the moment Lyapunov exponehtgp) of

the nilpotent system, i.e., systef@) with =0 and y,=0, are

(38)
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Fig. 5 Moment Lyapunov exponents of the nilpotent system

plotted in Figs. 4 for various values @f. As mentioned earlier,

the slope of the moment Lyapunov exponent curvpa0 is the
Lyapunov exponent. Straight lines with slopes being the exact
values of the Lyapunov exponent 0.2893% and passing
through the origin are plotted in Figs. 5 for the purpose of com-
parison. It is clearly seen that these straight lines are tangent to the
moment Lyapunov exponent curves at the origin, which ascertains
the correctness of the moment Lyapunov exponents obtained. Nu-
merical results of the moment Lyapunov exponentg(p) for
B=0.05, y,=0 are plotted in Figs. 6.

The stability indexp= ¢ is the nontrivial zero of the moment
Lyapunov exponent. For the given values @8f y,, and o, the
stability indexs can be determined as a root-finding problem such
that A4(6)=0. Numerical results of the stability indez are
shown in Figs. 7 fory,=0 and various values g8 and o.

For given values of3 and o, the pointyg of P-bifurcation is
given by the condition\ 4(5) =0, &( yg) =—d, whered=2 is the
dimension of systen{2). Baxendale and StroocKL3] found a
simple expression for the determination/of—d). Consider the
Stratonovich stochastic differential equation

m

dX=AX dt+ D, AXedW,, (39)
i=1

in RY, which satisfies a Lie algebra condition as specified in Bax-
endale and StroocKL3]. Then

1 m
Ax(=d)=—tr(Ag) +3 3, [tr(A)]* (40)
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For system(8), the Stratonovich stochastic system and the agypansion of the eigenfunction is applied. Using a symbolic
sociated ltestochastic system have the same form withandA;  computation software, approximate analytical results of Lyapunov
given by Eq.(11). Using Eq.(40), A,(—2)=0. SinceAq(P)=  exponent can be easily obtained, which compare very well with
—PB+Ay(p), henceAqy(—2)=2B+Ay(—2)=28. the numerical results. For the nilpotent system, the

For a damped systemAq(—2)=28#0, implying that approximate analytical Lyapunov exponents compare extreme-
mﬁjrggtlirc])tn of P-bifurcation does not exist or there is 8- | \ye|l with the exact value of 0.2893%2° For given values

. . . . . D .

From Figs. 4 and 6, it is clearly seen that the numerical resu zatgrrﬁirrlwigl the point of dynamic bifurcationy are easily
?\f tk_]e nloment Lyapunov exponent for syste@) show that On the other hand, the moment Lyapunov exponent can be

q(—2)=2p. q . X : ] .

etermined by solving a polynomial algebraic equation. However,

it is generally impossible to analytically solve an algebraic equa-
tion when the degree is higher than four. Therefore it is impos-
In this paper, the Lyapunov exponents and moment Lyapuné@le tolobtaln an approximation of the moment Lyapunov expo-
exponents of a near-nilpotent system under stochastic paf@nt higher than order one. A numerical scheme for the
metric excitation is studied. The system considered is the line&€termination of the moment Lyapunov exponents is proposed.
ized system of a two-dimensional nonlinear system exhibiting '€ €igenvalue problem is converted to a two-point boundary
pitchfork bifurcation. When the system is in the vicinity of theV&!ue problem, which is solved by the method of relaxation. Nu-
static bifurcation, the linearized system is near-nilpotent. The dperical results of the moment Lyapunov exponent and stability
fect of stochastic perturbation in the vicinity of static pitchfordndex are obtained.
bifurcation is investigated. To obtain correct approximations of
the Lyapunov exponent and moment Lyapunov exponents, a Sgﬁl_k led
ing is introduced. However, because of this scaling, the eig pexnowie gment
value problem for the moment Lyapunov exponent does not con-The research for this paper was supported, in part, by the
tain small terms so that the method of perturbation is ndtatural Sciences and Engineering Research Council of Canada
applicable. through Grant No. OGP0131355. The author is grateful to the

To determine the moment Lyapunov exponent, which isferees for the constructive comments which helped to improve
given by the eigenvalue of an eigenvalue problem, a Fourier serteg paper.
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Appendix A
Tenth-Order Approximation of the Lyapunov Exponent.
N(19=8141637789159147344366+3050676513874530091718654 1128161172329144118174988
+7759432783461661497981%%+ 441968213856521221038 762+ 194195296644753815586550
+722312024490829768359%8+ 219511829096563357122%6+ 5732064023551329947643
+1247296360504790646 792+ 23496818547877630773 + 36839160177431085056+ 49888072884882636807
+550279102592057344°+ 515752347551006 %2*+ 3656803439083523°+ 216194152660992'°
4683111822131 "+ 193257799689~ 1845493764°+ 92274688°
D10=17589121449320919053626930527257979085573916726 6050365730442241139675%2
+570929893621448253376 7%+ 402252565131291276431682+ 221363544296183715627570
+9844821261992515673881%+ 360635777550684337930%4+ 11054685558940038197 248
+285798658781937952358%+ 6269373098317537935538+ 117006025940088389632+ 185250124376464097 28
+2478260546110750738°+ 2776637563523563524+ 25451154846515208°+ 1868615977271296°
+103932625944576 "+ 3781716606978+ 7105150976§°+ 5075107842°

Appendix B in which, for efficient computation, for the first boundary point the
] ] last n;, components are taken as time nonzero components,
Two-Point Boundary Value Problems. Consider the fol- \whereas for the second boundary point the fisstomponents are
lowing two-point boundary value problem & dependent vari- taken as ther, nonzero components.
ables The solution of the finite difference Eqel2)—(44) consists of a
dy set of valuesy; ,, of the N variablesy;, i=1,2,... N, at theM
AR P grid pointsx,,, m=1,2,... M. The numerical solution requires
9i(y1 Y2, - yn)y =12, N, 1) Zn initial guess fory; . The corrections\y; ,, are determined
] N ] such thaty; n,+Ay; o, is an improved approximation to the solu-
with the n; boundary conditions at point=a andn, boundary tion. The corrections\y; ,, can be obtained by expanding the

conditions at poink=b: finite difference Eqs(42)—(44) in the first-order Taylor series
) with respect to the small changesy; ,. At the grid points
at x=a: Bj(X;y1.¥2,....yw=0, j=12,...n X5, X3, . .. Xy, from Eq.(42),
atx=b: Cy(Xiy1.y2, - yn)=0, k=12,...ny, Eim(Yim-1tAY1m-1, - YNm-1TAYNm-1:Y1m
wheren; +n,=N, i.e., there are totall boundary conditions. +AY 1 ms - YNmtAYNm)
There are two well-documented methods for solving the two- ' ' ’
point boundary values problefdl), i.e., the shooting method and ~Eim(Yim-1, - YNm-1:Y1ms - YNm)
the relaxation method 14]). For the completeness of the presen- N
tation of this paper, the relaxation method is briefly reviewed. + ’9E| m 4 2 Ay (45)
Discretize the domain of solutiora,b] into M grid pointsx, = ayn m—1 Ynm-1 ayn moomm
=a,Xs, ... Xy-1,.Xm=b. Using the backward difference
For the updateg; ,+ Ay, , to be a solution, the updated value of
% _Yim Yim-1 E; m must be zero, which leads to a setNfM — 1) equations for
dx], " Xn=Xm-1 ’ AYim
h d diff | Egs4l) laced b . o
the ordinary differential Eqs(41) are replaced by approximate )
finite difference equations on theM—1 grid points Z‘ STnAYnm- 1+ 2 S“ nA¥n-nm=~Eim, (46)
X0, X3, « - Xy
. _ where
Ei,mEyi,m_yi,mfl_(xk_xkfl)gi(xm;yl,mfyz,mv . vyN,m)= )
JE; JE;
- _ g — i,m ’ m :&.
i=12,...N, m=23,... M, (42) o Y1 N Y,
\tl)vgl?rzga):mz(}r%ﬁ(ig:sxgr_el) Yim=1/2(yim+Yim-1), and the Similarly, at the first boundary,=a, from Eq.(43), one has,
y equations
E;1=Bj(X1;¥11,Y21s - - - YN =0, (43) N
j:N—n1+1,N—n1+2,...,N, 2 JnAynl__Ej,lx J=N—n1+1,N—n1+2,...,N,
(47)
Ejm+1=Cu(Xm:Y1m Yoms - - - Yam) =0, k=12,...n,,
(44) where
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Explicit Equations of Motion
.. e uiacia | TOr Mechanical Systems

Professor of Civil Engineering, Aerospace and

Mechanical Engineering, and Mathematics W ith N 0 n i d ea I c 0 nStra i nts

Pr';e'ssfr'mlgg:q?d?cg Since its inception about 200 years ago, Lagrangian mechanics has been based upon the
Engineering, Electrical Principle of D’Alembert. There are, however, many physical situations where this con-
Engineering, and Economics fining principle is not suitable, and the constraint forcde work. To date, such situations
are excluded from general Lagrangian formulations. This paper releases Lagrangian
University of Southern California, mechanics from this confinement, by generalizing D’Alembert’s principle, and presents
Los Angeles, CA 90089-1453 the explicit equations of motion for constrained mechanical systems in which the con-
straints are nonideal. These equations lead to a simple and new fundamental view of
Lagrangian mechanics. They provide a geometrical understanding of constrained motion,
and they highlight the simplicity with which Nature seems to operate.
[DOI: 10.1115/1.1364492
1 Introduction D’Alembert’s principle, and each of these mathematical formal-

isms is equivalent to the other. Despite the continuous and vigor-

_On(_e of the central problems in classical mechanlcs is the detg[}s attention that this problem has received, the inclusion of situ-
mination of the equations of motion for constrained systems. TI&

. fions where the physically generated forces of constraint in a
importance of the problem stems from the fact that what make chanical systerSoynotsa);is?‘y D’Alembert’s principle has so
set of point masses and r'g'd bodies, a “system,” Is the Presents evaded Lagrangian dynamics. Yet, such forces of constraint
of constraints. When physmal constraints are |_mposed on an Uiy among those quite commonly found in nature. As stated by
constrained set of particles, forces of constraint are engende@

. i A . . dstein([9], p. 17, “This [total work done by forces of con-
which ensure the satisfaction of the constraints. The equations f i equal to zeds no longer true if sliding friction is present,

motion developed to date for such constrained systems are baggq\\ o must exclude such svstems from fduagrangia formu-
on a principle fir_st enunciated _by D'Alemb_ert, an_d later elaboratq tion” ([9]). And Pars in his %/reatisés]) on analyti(?al dynamics
by Lagrangd 1] in his Mechanique Analytiquahich dates back (1979, p. 14 writes, “There are in fact systems for which the

to 1787. Today the principle is referred to as D’Alembert’s prin: rinciple enunciate@D’Alembert's principld . .. does not hold.
ciple, and it is the centerpiece of classical analytical dynamics.g{,; such systems will not be considered in this book.”

states, simply, that the total work done by the forces of constraint), this paper we obtain the equations of motion for constrained
under virtual dis_pla_ceme_nts is always zero. Constraints_forwhig@stems where the forces of constraint indeed do not satisfy
D'Alembert's principle is applicable are referred to &®al 5 alembert’s principle, and the sum total of the work done by
constraints. _ them under virtual displacements no longer need be zero.

Since its initial formulation by Lagrange more than 200 years rhe oytline of the paper is as follows. In Section 2.1 we gen-
ago, the problem of constrained motion has been vigorously agghjize p'Alembert’s Principle to include constraint forces that
continuously worked on by numerous scientists including Volfyork. This leads us to a deeper understanding of the specification
erra, Boltzmann, Hamel, Whittaker, and Synge, to name a few. ¢ constraints in mechanical systems. This we discuss in Section
1829, Gaus$2] provided a new general principle for the motion 5 gection 3 deals with the mathematical statement of the prob-
of constrained mechanical systems in what is today referred t0)gg, of constrained motion. Section 4 states and verifies the ex-
Gauss's Principle. About 100 years after Lagrange, GiBband  pjicit equation of motion for constrained systems with nonideal
Appell [4] independently discovered what are known today as theality constraints. This equation leads to a new and fundamental
Gibbs-Appell equations of motiof3,4). Pars([5], p. 202 refers — principle of Lagrangian mechanics. The proof we give here is
to the Gibbs-Appell equations 45]) ... probably the MOSt simpler than the one given if10]), and it yields an important
comprehensive equations of motion so far discovered.” Dirageometrical interpretation that we discuss later. Section 5 gives an
because of his interest in constrained systems that arise in qUaRample of a nonholonomically constrained system for which the
tum mechanics, in a series of papers from 1951 to 1969 developgghstraints are nonideal. We show here the ease of applicability of
an approach for determining the Lagrange multipliers for cofpe explicit equation of motion obtained in the previous section
strained Hamiltonian systenig6]). More recently, Udwadia and gng point out the insights it provides into understanding con-
Kalaba[7] presented a simple, explicit, set of equations, applisrained motion where the constraint forces do work. Lastly, Sec-
cable to general mechanical systems, with holonomic and nqgsp 6 deals with the geometry of constrained motion and exhibits

holonomic constraint§7,8]). o ) the simplicity and aesthetics with which Nature seems to operate.
However, all these alternative descriptions of the motion of

constrained systems discovered so far, as well as the numerous
articles that have subsequently dealt with them, rely on

Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF 2 Qenerallzatlon of D’Alembert’s 'PrlnC|pI.e., qon'
MECHANICAL ENGINEERS for publication in the ASME GURNAL OF APPLIED  straint Forces That Do Work, and Their Specification
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, April

2, 2000; final revision, Oct. 9, 2000. Associate Editor: N. C. Perkins. Discussionon 2 1  Generalized D’Alembert’s Principle. Consider an un-

the paper should be addressed to the Editor, Professor Lewis T. Wheeler, Departrw}.l ; ; : ;
of Mechanical Engineering, University of Houston, Houston, TX 77204-4792, and strained SYStem of partlcles, each partlcle havmg a constant

will be accepted until four months after final publication of the paper itself in thEN&SS. By ‘.‘unconStrained” we mean that the. num.ber of general-
ASME JOURNAL OF APPLIED MECHANICS. ized coordinates, used to describe the configuration of the sys-
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tem at any timet, equals the number of degrees-of-freedom of themple, sliding frictional forcegsare in fact commonplace, and
system. The Lagrangian equation of motion for such a system daave to date defied5,9]) inclusion in a simple way within the
be written in the form general framework of analytical mechanics. The main reason for
G - — - _¢ this difficulty is that three obstacles need to be simultaneously
M(@.0a=Q(a.a.).  a(0)=do. A(0)=0o @ surmounted. Firstly, we require the specification of such con-
where q(t) is the n-vector (i.e., n by 1 vectoj of generalized straint forces to be general enough so that they encompass prob-
coordinatesM is ann by n symmetric, positive-definite matriQQ  lems of practical utility. Secondly, this specification must, in order
is the “known” n-vector of impressed forces, and the dots refer t& comply with physical observations, yield the accelerations of
differentiation with respect to time. By “known,” we shall meanthe constrained systemmiquelywhen using the accepted math-
thatQ is a known function of its arguments. The accelerat@n, ware of analytical dynamics that has been developed over the last
of the unconstrained system at any tinés then given by the 250 years. And lastly, when the constraint forces do no work, we

relationa(q,q,t)=M ~*(q,t)Q(q,q.t). must obtain the usual formalisms/equations that have thus far
We shall assume that this system is subjected to a set ofbeen obtainede.g., by Lagrange, Gibbs, Appell, and Gaussd
=h+s consistent equality constraints of the form are known to be of practical value.
(q.1)=0 @) Clearly, the work done by such a constraint force under virtual
®La, displacements at each instant of time needs to be known, and
and must therefore be specified using some knawrectorC(q,q,t),
S asv'C. Such an additional specification calls for a generalization
#(a.q,)=0, ®) of D’Alembert’'s principle. We make this generalization in the

where ¢ is anh-vector andy an s-vector. Furthermore, we shall following manner:

assume that the initial conditiorg, and q, satisfy these con-  For any virtual displacement at time t, the constraint force
straint equations at time=0. Assuming that Eqg2) and(3) are n-vector ( at time t does a prescribed amount of work given by
sufficiently smooth, we differentiate E(R) twice with respect to

time, and Eq(3) once with respect to time, to obtain the equation vTQ%(t)=v"C(q,q,t). (6)

A(a,0,1)9=b(a,q.1), (4) HereC(q,q,t) is a knownn-vector(i.e., a known function of, q,
where the matrixA is m by n, andb is a suitably definedhvector ~andt) that needs to be specified and depends on the physics of the
that results from carrying out the differentiations. situation, as discussed in the example below. The work done by

This set of constraint equations includes among others, tHee constraint force in a virtual displacement may thupdsitive,
usual holonomic, nonholonomic, scleronomic, rheonomic, catGEQHtIV?, or zero o ' o .
static, and acatastatic varieties of constraints; combinations ofRelation(6) constitutes a new principle. This principle requires
such constraints may also be permitted in Ej. It is important @ description of the nature of the nonideal constraint force at time
to note that Eq(4), together with the initial conditions, is equiva-t through a specification of the work it does during a virtual dis-
lent to Egs.(2) and (3). placement at that time. It generalizes D’Alembert’s principle, and

Consider now any instant of time When the equality con- whenC=0, it reduces to it. In what follows we shall often refer to
straints(Egs.(2) and(3)) are imposed at that instant of time on thghe constraint forca-vector,Q°, as the constraint force.
unconstrained system, the motion of the unconstrained system i

S I . . .
in general, altered from what it would have bdanthat instant of 2.2  Specification of Constraints. The equations of motion

gﬁovide a mathematical model for describing the motion of any

time) in the absence of these constraints. We view this alterati en physical mechanical system. The constraints specify the
in the motion of the unconstrained system as being caused bygé\ﬁ | PNy System. P e
onditions that the generalized displacements and/or velocities

additional set of forces, called the “forces of constraint,” actin%“ust satisfy at each instant of time as the motion of the system
on the system at that instant of time. The equation of motion . . Y
ensues under the action of the impressed forces. However, the

the constrained system can then be expressed as equations that state these conditidifisgs. (2) and (3)) do not
M(g,1)g=Q(q,q,t)+ Q%(q,q,t), q(0)=q,.,q(0)=qo (5) completely specify the influence of these constraints on the motion
iy B . , o of the mechanical systerfor short, we shall say that E¢) and
where the additional “constraint force’h-vector, Q%(q.d.t), (3) do not completely specify the constraints on the mechanical
arises by virtue of the constraint?) and (3) imposed on the system. This is what the generalized D’Alembert’s principle tells
unconstrained system, which is described by &y.Our aimisto ;g
determineQ° explicitly at timet in terms of the known quantities  There is a second part to the specification of the constraints, and
M, Q, A b, and information about the nonideal nature of thenis deals with thenature of the forces that are created by virtue
constraint force, at timé¢. The latter comes from looking at the of the presence of the constrainfor this, the mechanician who
physics of the system. o is modeling a specific mechanical system needs to study the sys-
A virtual displacement[8]) at timet is any nonzera-vectorv  tem, possibly through experimentation, or otherwise. It is this in-
such thatA(g,q,t)v =0. When the constraint foraevector does formation regarding the nonideahture of the force of constraint
nowork under virtual displacements we havev TQ®=0. Thisis that is encapsulated in the vec®(q,q,t).
also referred to as D’Alembert’s principle, and it is the basis that For example, consider a rigid block that is confined to move on
underliesall the different formalism¢[1-8]) hereto developed of a horizontal surface=0. The specification of this relatiofi.e.,
the equations of motion for mechanical systems subjected to the 0) doesnot constitute a complete specification of the con-
constraints described by Eq®) and(3). straint. For, the presence of this constraint creates a constraint
As demonstrated elsewhef§7,8]), one formalism that yields force, and this force influences the motion of the block. So to
an explicit equation describing the motion of such a constrainegjequately model the motion of the block on the surface, one
system that abides by D’Alembert’'s principle is given Mg needs to prescribe theatureof this constraint force. Such a pre-
=Q+MYB*(b—Aa)=Q+Q°, where them by n matrix B scription is situation-specific and must be specified by the mecha-
=AM~%2 andB™ stands for the Moore-Penrose generalized imician either by experimentation with the system, by observation,
verse([11]) of the matrixB. by analogy with other systems)he has experience with, or by
The central question that arises now is how to incorporate intfmme other means. For example, if the mechanician finds that the
the equation of motiongonstraintsthat do do work under virtual surfaces in contact are rougehe may want to perform some
displacements, thereby bringing such constraints within the Laxperiments to understand the nature of the forces created by the
grangian framework. Such nonideal constraint for¢es ex- presence of this constraint. For a specific sefgfhe may find
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that the work done by the constraint force under virtual displace-We require to find then-vectorQ°(q,q,t) such that
ments is proportional to the speed of the block, or perhaps to the . . o ) .
square of its speed. Thus, depending on the situation at iand, 1 M(4.)9=Q(a,a,)+Q%(q.q.t), with q(0)=qo, q(0)

. a% ik . =0, andQ a known function ofg, g, andt; (S)
would then be spemf.led asao[qy] or ao\q|[qy] respectively, 2 (1) =0, #(q,8,) =0, with ¢(00,0)=0; b(qo,t) =0, and
wherea, may be a suitable constant whose value would also need y(q,,00,0)=0; and, (S2

to be prescribedperhaps by performing more experiments, 3 for all vectorsv such thatA(qg,q,t)v=0, we require
further, the roughness of the surface changes from location to ,,7Q°(t)=y"C(q,q,t), where then-vector C(q,q,t) is a
location, additional experimentation may be warranted, and a fur-  known function of its arguments. It specifies thature of

ther refinement may be required in specifying the ve€toOr, in the constraint forces. (S3
some other situation,C may perhaps be modeled as ) ) ) )
—a,Q%q,q.t) (see Eq(11) below). We remind the reader that ite(82) above is equivalent to Eq.

The invocation of D’Alembert's principle when modeling a me{4): and item(S3) is our generalized D'Alembert's principle as
chanical system is then clear. D'’Alembert's principle specifies tiiated in Section 2. . . .
nature of the constraint forces by simply sett@g:0. It points to Xt we shall provide the explicit equation of motion that
the genius of Lagrange, for this specification accomplishes tRg'€rges from the above mathematical statement, and furthermore
following three things simultaneously. show that the accelerations provided by it are unique. From _here
on, for clarity, we shall suppress the arguments of the various
1 It provides a condition that enables the accelerations of theantities.
constrained system to h#niquely determined, something desir-
able when dealing with mechanical systems. 4. Equation of Motion for Constrained System With
2 It specifies the nature of the constraint force through the

hoc specification o€=0. This allows the mechanician to model onideal Constraints
a given mechanical systemithout having to explicitly provide  Resylt 1. An equation of motion of the constrained mechani-

further information(beyond that contained in the constraint Eqs;q| system that satisfies conditio81)—(S3 given in the previ-
(2) and/or (3)) on the nature of the constraint forces that areqys section is explicitly given by

created by the presence of the constraints. Most importantly, it o 1 y
therefore obviates the need for situation-specific experimentationMd=Q+Q°=Q+M*B*(b—Aa)+M 1 -B*B}M1C.
observation, etc., that would have been otherwise necessary to (7

specify C when modeling a specific mechanical system. Proof. We shall prove that the constraint foneerector,Q°, given
3 This specification o€=0 works well(or at least sufficiently by Eq.(7) satisfies(S)—(S3.

well) in many practical situations. This is perhaps the most re- (S1) The form of Eq.(7) shows tha(S1) is satisfied.
markable attribute of D’Alembert’s principle, and it points to the (S2 Using g from Eq. (7) in Eq. (4) gives
genius of Lagrange.

. . . . _ Ag=Aa+BB*(b—Aa)+B(I-BTB)M~YC
All this becomes quite obvious, especially when modeling the

problem of sliding friction where we immediately recognize that =Aa+BB"b—BB'BMY%a
the equation that describes the motion of the block on a horizontal N 2 N

surface must depend not only of the constraint equatier), but =Aa+BB b—BM™a=BB"b, (®)
indeed also on theature of the constraint force engendered byyhere we have used the relatioas M ~1Q, BB*B=B, andB

this constraint. And the latter depends on the physics of the spea \-12 Equation(4) can be expressed &MY2j)=b, and
cific situation—the materials in contact, the surface roughnesnging consistent, implie§8]) that BB*b=b. Using this }n the

etc., and, of course, the intended use that the mechanician W3l hand side ir(11) proves that the acceleratidnsatisfies Eq.

° gﬂ: |trr1] erlg(l);i[ieclatlodynamics we may have got so used to invol£4)' Hence(S2) is satisfied.
i) - B Cc . .
ing D’Alembert’s principle, which obviates the explicit need to (S3 As seen from(7), the constraint forceQ”, is given by

specify thenatureof the constraint force for any given mechanical  Q°=Q°+Q%=MB*(b—Aa)+M¥¥|1-B*BIM~V2C.

system by implicitly takingC=0, that it is tempting to think that (9)
such a specification may be wholly unnecessary, even in general.
One perhaps may then get the impression that the equations
specify the constraintéEqgs. (2) and/or(3)) are all that is neces-
sary for properly posing the problem of constrained motibinis {u|Bu=0u#0}}=u"™M ¥2Q= "M~ Y2C, (10)
indeed is not soSpecification of the nature of the constraint o - ) o Toa

forces isalways necessary. The generalized D’Alembert’s prinBut Bu=0 implies "B™=0, and this([8]) implies . B =0.
ciple stated in Section 2.1 reminds us that, D'Alembert's principlBY Ed. (9) we then haveu™ ~Y2Q°=u"B* (b—Aa)+ u'{I
provides, in factpne particularspecification for the nature of the —B*B}M~Y2C= "M ~2C, which is the required resul63.0]

constraint force. As in the case of sliding frictiod,may not be Result 2. The equation of motion for the constrained system

zero, and its explicit specification is necessary, in general. Sucréieen by (7) is unique
specification, as mentioned before, is situation-specific and rel SProof. Assume there exists another set of solution vectprs

on the discernment and discretion of the mechanician who is mod-. c -
eling the system. +e and Q°+R such that(S1)—(S3) are also satisfied. We must

Having explained what we mean by “specification of contlen hav_el\/l(d+é):Q+Q°+_R_, and by(5), Me=R. Similarly,
straints” for a given, constrained mechanical system at hand, @éd+ € =D, and by Eq(4), Ae=0. So then-vectore qualifies as
now need to explicitly determine its equation of motion. We staft Virtual displacement. Also, for all virtual displacementswe

by providing a statement of the problem of constrained motionmMust havev '(Q°+R)=v'C, so thatv'R=0. Thuse'R=¢é'Mé
=0, and hencee=0 becauseM is positive definite. SinceR

; =Me=0, uniqueness follows. O
3 General Statement of the Problem of Constrained Thus Eq.(7) gives theuniqueequation of motion describing the

Motion With Constraints That Do Work acceleration of a constrained mechanical system where the con-
In the notation that we have thus far developed, the problem gifaints are nonideal and the constraint forces do an amount of
constrained motion can now be mathematically stated as followsork (under the virtual displacement) given byvTC(q,q,t),

eB=AM"12 after settingy=M 24, (S3 is equivalent to
proving that
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with the n-vectorC being known. We explain the salient featureszfvT(aOuTu)(u/|u|), whereu is the velocity of the particle and
of Egs.(7) and(9) in the following series of remarks. T e .
Remark 1 The equation of motion(7), for the constrained |Ul=+ Vu'u. Such a specification of theatureof the constraint
system does not contain any “multipliers” that need to be SOlveg{fce is left to the discretion of the mechanician who is modeling
S

for, as found in Lagrange’s equations that describe constrainklf System, and it would depend on the physics of any particular
motion with ideal constraints. ituation(see Section 2)2What is the equation of motion of this

S . e . nonholonomically constrained system in which the constraints
Remark 2No elimination of coordinater velocities is done;  ~raate nonideal forces of constraint?

therefore, no set of coordinatésr velocitieg is singled out for  ysing Eq.(7) we can write down an explicit equation for the
special treatment, as in the Gibbs-Appell approach that is apmiirotion of the particle as follows.

cable for ideal constraints. The equation of motion is stated in theDifferentiating the constraint equatign=z2k, we get
samecoordinates as those describing tineconstrainedsystem.

This makes it simple to directly assess the influence that the pres- A=[-Z%2 1 0], (13)
ence of the constraints have on the accelerations of the uncon-
strained system. The next remarks deal with this. O  with

Remark 3 The total constraint force-vector,Q¢, is given by .
Q°=QF+Q¢,, and it is seen to be made up wio additivecon- b=2xzz. (14)
tributions. The first member on the right-hand side of E9).

We note that it is theexistenceof the constrainty=z?x that
createsthe force of constraint. This force of constraint is nonideal.
Qf=M¥B*(b—Aa) (11) It does work under virtual displacements; its magnitude is propor-
onal to the square of the speed of the particle, and it opposes the
article’s motion. It isnotan “impressed force” on the particle. It
'would disappear in the absence of the constraint.

SinceM =13, B=A. By Eq.(11) we then obtain

given by

is the constraint forcéhat would have been engendered were aﬂ
the constraints idealandC=0. This contribution is ever present
no matter whether the constraints are ideal or not.

The second member on the right-hand side of @ygiven by

Q5 =M¥(1-B B}M (12) Q[-7 1 oL EhT) (15)
gives theadditional contribution to the constraint force due to the (1+29
presence of nonideal constraints where the constraint fatoes and, by Eq.(12),
work under virtual displacements. This breakdown of the total
constraint forcen-vector explicitly shows the way in which X+Z22Y | o i o
knowledge of the virtual work done by nonideal constraints enters Q.= —ay| Z2X+2% Xy +z7) (16)
the equation of motion of the constrained system. a n 0 21+2% (1+2%

Remark 4 The contribution,QiC, to total force of constraint,
Q°, does no work under virtual displacements. For, as in the proofThe equation of motion of the nonholonomically constrained
of Result 1,0TQ =v"™M¥B*(b—Aa)=u"B"(b—Aa)=0, for system with nonideal constraints then becomes
all u such thatBu=0. Hence, at each instant of time'Q°

. 2
—uTQ%,=v'C. _ O X AN eser-ty| 2

Remark 5 The forceC(q,q,t) provides a mathematical speci- Y[=Q+Qi+Qn=|fy|+ T a+A 1
fication of the nonideal nature of the constraints by informing us z f, 0
of the work done by the constraint forcevector,Q°, under vir- VI
tual displacements;. Its specification depends on the physics of e T OB+yR )2

. . L . —ag| ZX+ZY | —————F—— a7)

any given particular situation. It engenders a contribut@f,, to 21+ 29 (1+2%

the total constraint forceQ®, but in general, this contribution is

such thatQp,;# C. As seen from Eq(12), only at those instants of The |ast member on the right-hand side of ELj7) exposes ex-
time whenM ~C lies in the null space of the matri8, does plicitly the contribution that the nonideal character of this non-
Qni=C. holonomic constraint provides to the total constraint foiQ€,
Furthermore, at those instants of time whén Y2C is such that The second member on the right informs us of the constraint force
it lies in the range space @', thenQS,=0. For thenM~Y2C  the particlewould be subjected to, were the nonholonomic con-
can be expressed & w for some suitable vectaw, and by Eq. straint y=z?x ideal. As stated in Remark 5, in this example
(12) we have, M ¥2Q¢ =(I-B*B)B'w=[B"—(B"B)"B"lw  Qpi#C. _ _
=[B"-BT(BT)*BT]w=0. Here, in the second and third equali- Note that whera,=0, the third member on the right of EQL7)
ties we use the properties of the Moore-Penrose invggje ] disappears, and we get the correct equation of motion that is valid
Remark 6 When the constraints are ide@=0, and the equa- for ideal constraints. Then, our equation becomes equivalent to
tion of motion given by Eq(7) reverts to one that is well known Lagrange’s equation with multipliers and the Gibbs-Appell equa-
([8]), and has been shown to be equivalent to the usual Lagrarit, both of which are valid only for ideal constraints.
equations with multipliers, and to the Gibbs-Appell equations, In Ref. (10]) we handle the sliding friction problem of a bead

each of which is valid only for ideal constraints. [ running down a wire. As expected, E7) indeed yields the
proper equations of motion, which in this case are easy to verify

5 Example using Newtonian mechanics. _
Holonomically constrained systems where the constraint forces

We illustrate the power of our result by considering a particlgre nonideal, as in sliding friction, may at times be handled by the
of unit mass moving in an inertial Cartesian frame subjected toNewtonian approach. However, to the best of our knowledge there
set of impressed forcelg(x,y,zt), fy(x,y,z,t), f(x,y,z,t) act- is no way to date to obtain the equations of motion for nonholo-
ing in thex, y, andz-directions, respectively. The particle is subnomically constrained systems where the constraint forces are
jected to the nonholonomic, constraint=z>x. The presence of nonideal. Thus, seemingly simple problems like the one consid-
this nonideal constraint creates a force of constraifbr the ered in this section have so far been beyond the compass of the
specific system at hand, we assume that this force of constrdiaigrangian formulatiorisee Refs[5] and[9] for a more exten-
does work under virtual displacements given hy'Q® sive discussion
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6 The Geometry of Constrained Motion ARB

The geometrical simplicity of the equation of motitf) devel-
oped herein can perhaps be best captured by using the “scaled”
accelerationgjs= M%), a;=M¥2a=M"12Q, §¢=M ~Y2Q° and ’
ce=MY(M~1C)=M~%2C. The equation of motion5) of the
constrained system can then be written in terms of these scaled B'b
accelerations as /

.- / C

as(t) =ay(t) +ag(t), (18) o w

and the problem of finding the equation of motion of the con- - ‘ . » MB)

strained system then reduces, as pointed out by Gilsgo F——N(a, +¢,) —>

finding thedeviationAqs=qg(t) =qgs(t) —ag(t) of the scaled ac-

celeration of the constrained systeqa(t), from its known, un- Fig. 1 The geometry of constrained motion is depicted using

constrained, scaled acceleratiag(t). Equation(7), then takes on projections on A{(B) and R(BT). The projection of ¢§son N(B)

the simple form is the same as that of (a,+c,) because Ng,=N(as+c,). The
vector B b is orthogonal to this projection.

gs=(1—B"B)(as+cs)+B™b, (19)

from which we can explicitly obtain the deviatioAgs, as
operate. It generalizes the results obtained in R&2]) to include

Ags=B"(b—Bay)+(I—B"B)cs. (20)  systems in which nonideal forces of constraint exist.
It should come as no surprise that the vectaysand cg enter
Let us denoteN=(1—B*B), and T=B*B. To understand the ; . T s =
first member on the right-hand side of H@0), we note that the Eqg. (19 in the same way. Though their genesis is vastly different,

extent to which the acceleratiom of the unconstrained s stemthey come, after all, from forces that act on the system. Nofice,
X . L y however, that the sumag+ cg) does not enter directly. The matrix
doesnot satisfy the constraint Eq4) is given by

N=(1—B*B) is a projection on the null space Bf and hence it

e=b—Aa=b-Bas. (21) is th_e sum’s projection on this space that enters the equation of
Equations(19) and (20) can now be rewritten as motion.
ds=N(astcy)+B"b (22) Conclusions
and We summarize the contribution in this paper as follows.
A§,=B*b—Ta,+Nc,=B*e+Nc,. (23) 1 To date, Largangian mechanics has been built upon the Prin-

ciple of D’Alembert. This principle restricts Lagrangian mechan-
Noting the definition ofAqs, Eq. (23) can be expressed alter-ics to situations where the work done by the forces of constraint

natively as under virtual displacements is zero. In this paper we relax this
. et i ha— 112 restriction and thereby release Lagrangian mechanics from this
g—a=(M B")e+ (M NM )C. (24) confinement.
This form of our result leads to the following new fundamental 2 We have generalized D’Alembert's principle to include situ-
principle of Lagrangian mechanics: ations in which the constraints are not ideal, and the forces of

] ) . ) constraint may do positive, negative, or zero work under virtual
The motion of a discrete mechanical system subjected to c@fisplacements. The generalized principle reduces to the usual

straints that are nonideal evolves, at each instant of time, i§'Alembert's principle when the constraints are ideal.
_such a way that the d_eviatior_l of its accelerations from those 3 The generalized D’Alembert's principle highlights the fact
it would have at that instant if there were no constraints Ofhat the description of the motion of a constrained mechanical
it, is made up of two components. The first component dgstem requires more than just a statement of the equations of
propor_tlonal to the extent to whlch_the accele_ratlons COreeonstraint, i.e., Eqg2) and/or(3). It alwaysalso requires a speci-
sponding to the unconstrained motion, at that instant, do N@ktation of the nature of the forces of constraint that the con-
safisfy the constraints; the matrix of proportionality iSstraints engender. This is done in terms of the work done by the
M~2B", and the measure of the dissatisfaction of the coforces of constraint under virtual displacements, through a pre-
straints is provided by the vector e. The second componenisigiption of then-vectorC(q,q,t). D’Alembert’s principle is thus
proportional to the vector C that specifies the work done byeen aone particular wayof specifying the nature of the forces
the constraint forces under virtual displacements, at that inuf constraint, for it prescribes the vect6(q,q,t) to be identi-
stant, and the matrix of proportionality &M~ YNM~9).  cally zero. In general, one has to rely on the discretion of the
mechanician to specify the vect@(q,q,t) upon examination of
Nhe specific system whose motion needs to be modeled. When
D’Alembert’s principle is invoked while dealing with a given con-
strained mechanical system—and this is most often the case in
analytical dynamics, to date—the burden of this specification
“seems” lifted from the shoulders of the mechanician, for the
N'B*=(1-B*B)™B*=(1-B*B)B*=B*—B*BB* =0, principle simply setsC(_q,q,t) to the zero vector. However, the
(23) conscientious mechanism needs to examine if, and how well, the
forces of constraintin the given physical system being modeled
sinceB*BB"=B*. Equation(22) thus informs us that the scaledexhibit the behavior subsumed by this principle.
acceleration of the constrained system is simply the sum of two4 The framework of Lagragian mechanics is used to show that
orthogonalvectors, one belonging to the null spaceBef-denoted  this generalized D’Alembert’s principle provides just the right ex-
M(B), and the other belonging to the range spacBf-denoted tent of information to yield the accelerations of the constrained
R(BT). Figure 1 depicts relation€2) and (23) pictorially, and systemuniquely as demanded by practical observation. In the
reveals the geometrical elegance with which Nature appearssituation that the constraints are ideal, these accelerations agree

Now the operatomN, being symmetric and idempotent, is al
orthogonal projection operator on the null spaceBpfand the
vectorB*b belongs to the range space Bf. Furthermore, the
two right-hand members of E¢22) constitute twon-vectors that
are orthogonal to each other, because
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with those determined using formalisms developed by Lagrange,7 We have provided an insight into the geometry of con-

Gibbs, and Appell, each of these being applicable only to the cafained motion revealing the simplicity and elegance with which
of ideal constraints. Nature seems to operate.

5 We have presented here the general, explicit, equations @éferences
mOt!On for mechanical systems with nonideal, equa“ty' _Con'[l] Lagrange, J. L., 178 Mecanique AnalytiqueMme Ve Courcier, Paris.
straints. They lead to a new and fundamental understanding d] Gauss, C. F., 1829, “Uber Ein Neues Allgemeines Grundgesetz der

i 1 ; Mechanik,” J. Reine Ang. Math.4, pp. 232-235.
constrained motlon. Ta the best of our kn0W|edge.’ these equfitlon[%] Gibbs, J. W., 1879, “On the Fundamental Formulae of Dynamics,” Am. J.
are arguably the simplest and most comprehensive so far discov-" wath., 2, pp. 49-64.

ered. They will aid in understanding the dynamics of mechanical4] Appell, P-,dlB99, “Sur une Forme Generale des Equations de la Dynamique,”
: - s : : . C. R. Acad. Sci., Paris}29 pp. 459-460.

systgms in varlo_us fields such as t_)lomeChanlcs_’ robotics, anf!;] Pars, L. A., 1979A treatise on Analytical Dynamic$xbow Press, Woo-
multibody dynamics, where such nonideal constraints abound. dridge, CT, p. 202.

6 Our equations show that the constraint faneeector is made [6] Dirac, P. A. M., 1964 Lectures in Quantum Mechanic¥eshiva University,

. . . L. New York.

up of two additive contributionsQ®¢= Q|°+ Qﬁl . Explicit expres- [7] Udwadia, F. E., and Kalaba, R. E., 1992, “A New Perspective on Constrained
sions for each of these contributions are given in this paper. The  Motion,” Proc. R. Soc. London, Ser. 39, pp. 407-410.

I c . . [8] Udwadia, F. E., and Kalaba, R. E., 199%nalytical Dynamics: A New Ap-
contributionQ;” alwaysexists whether or not the constraints are = proach Cambridge University Press, Cambridge, UK.

ideal, and it is dictated by the kinematic nature of the constraints[9] Goldstein, H., 1981Classical MechanicsAddison-Wesley, Reading, MA.
. . c . . . [10] Udwadia, F. E., and Kalaba, R. E., 2000, “Non-ideal Constraints and Lagrang-
The contributionQy,; arises from aspecificationby the mechani- ian Dynamics,” J. Aerosp. Eng.13, pp. 17-22.

cian of the nonideal nature of the constraints that may be involveld] Pﬁflﬂose, R., 1955, “A Generalized Inverse of Matrices,” Proc. Cambridge
. . . L . . Philos. Soc.51, pp. 406-413.

in any partlcular_snuatl(_)n, it prevails when the constraint forceﬁz] Udwadia, F. E., and Kalaba, R. E., 1995, “The Geometry of Constrained
do work under virtual displacements. Motion,” Z. Angew. Math. Mech.,75, pp. 637—640.
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= | Anisotropic Elastic Solids

A general solution satisfying the strain-displacement relation, the stress-strain laws and

- C. W. Fan the equilibrium conditions has been obtained in Stroh formalism for the generalized
Center fO.f Aviation and Space Technollogy, two-dimensional anisotropic elasticity. The general solution contains three arbitrary com-
Industrial Technology Research Institute, plex functions which are the basis of the whole field stresses and deformations. By select-
Hsinchu, Taiwan, R.0.C. ing these arbitrary functions to be linear or quadratic, and following the direct finite

element formulation, a new finite element satisfying both the compatibility and equilib-
rium within each element is developed in this paper. A computer windows program is then

) M C. Hs"?h coded by using the FORTRAN and Visual Basic languages. Two numerical examples are
Institute of Aeronautics and Astronautics, shown to illustrate the performance of this newly developed finite element. One is the
National Cheng Kung University, uniform stress field problem, the other is the stress concentration problem.
Tainan, Taiwan, R.0.C. [DOI: 10.1115/1.1364497
1 Introduction expressions of the stiffness matrices for two basic elements: linear

and quadratic elements, are derived in this paper. A finite element
omputer windows program is then coded by using the FOR-
AN and Visual Basic languages. Due to the use of the Stroh

Due to the anisotropy nature of composite materials, the m
chanical behavior of composite structures is usually studied
using anisotropic Qlastlc]ty. There are two main app(o.aches def%FmaIism, the compatibility and the equilibrium conditions
Ing W't.h th.e two-d.lmensmnal !lnear an'SOIer'C elasticity. One i ithin each element are all satisfied. The accuracy and versatility
Lekhnitskii formalism([1]) which begins with the stresses, theof the elements are then shown through several numerical
other is Stroh formalisn{[2,3]) which starts with the displace- examples
ments. Both of these two formalisms are formulated by compleX '
variable functions. Although they are well known in the mechan-
ics community, they are not very popular in the engineering soci-
ety. On the other hand, the finite element method is an importght Two-Dimensional Linear Anisotropic Elasticity
and popular tool for mechan.ical analyses. The numerous approxi-In a fixed rectangular coordinate systeq i=1,2,3, letu;
mate procedures discussed in the literature generally fall into three e;; be, respectively, the displacementl stress’ e,m'd strelti’n The

. . . H B j ij ll ’ ’ ’ .
categories: the direct method, the method of weighted residu ﬁ‘ain-displacement equations, the stress-strain laws, and the equa-
and the variational method4]). Among them the displacement- e

e L tions of equilibrium are
based variational formulation is the most popular one. To the
authors’ knowledge, none of the results concluded by the complex

variable formulation has ever been employed in the displacement- &ij =5 (Ui +uj), (2.13)

based finite element formulation. In this paper, we try to build a

bridge connecting these two main formulations. 0ij = Cijks€ks> (2.1b)
It is known that the equilibrium is usually not satisfied within

elements and between elements for a displacement-based finite ij.,i = CijksUk,sj= 0, (2.k)

element. However, for a displacement-based complex variaiiere repeated indices imply summation, a comma stands for
formulation—Stroh formalism, a general solution satisfying thgjfferentiation andCys are the elastic constants which are as-
strain-displacement relation, the stress-strain laws and the equiliimed to be fully symmetric and positive definite. Assuming that
rium equations has been obtained expliciffg]). Hence, it is . =123 depend ox, andx, only, the general solution to
expected to get some merits by imbedding the general solution(gfl) can be written in matrix notation a3])

Stroh formalism into the finite element formulation, which will be

called “Stroh finite element” in this paper. u=Af(z)+Af(z) =2 RqAf(z)},
In Stroh formalism, the general solution contains three arbitrary _ (2.29)
complex functions which are the basis of the whole field stresses ¢=Bf(z) +Bf(z) =2 Re{Bf(2)},

and deformations. Like the shape functions used in the finite ele:

ment method, the arbitrary functions can be chosen to be polyﬁ%rJere

mials. Although they are complex variable functions, through the A=[a, a, ag], B=[b; b, bs],

use of identities developed in the literature, for exani{#d), the

entire formulation can be transformed into a real form expression f(2)=[f1(z0), f2(z2), fa(z3)]", (2.2)

like the usual finite element. Based upon this concept, the explicit
Za:X1+ anZ .

Contributed by the Applied Mechanics Division ofif AMERICAN SocleTY oF  An overbar denotes the complex conjugate and Re stands for the
MECHANICAL ENGINEERS for publication in the ASME GURNAL OF APPLIED  real partslfa(za), a=1,23, are h0|omorphic Comp|ex functions

MECHANICS. Manuscript received by the ASME Applied Mechanics Division, May, i ; ; : H _
4, 2000; final revision, November 30, 2000. Associate Editor: M. Ortiz. Discussi which will be determined by the satisfaction of the boundary con
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on the paper should be addressed to the Editor, Professor Lewis T. Wheeler, De;fgmons- ¢’ is the stress function vector which is related to the
ment of Mechanical Engineering, University of Houston, Houston, TX 77204-4793tresses by
and will be accepted until four months after final publication of the paper itself in the
ASME JOURNAL OF APPLIED MECHANICS. oi1=— iz, Tix=¢i1. (2.3)
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p., «=1,2,3, are the material eigenvalues whose imaginary parts H=2iAAT, L=-2iBB", S=i(2ABT—1), (2.8)
are positive. §, ,b,) are their associated eigenvectors. These val-

ues can be determined by the following eigenrelation: wherel is the unit matrix. It can be shown that andL are
symmetric and positive definit¢5]).

Né=pé, (2.4 with N defined in(2.6c), Nk can be written explicitly as
where NK= (X1 +XN) K= XK+ ko BN+ L+ CRETTXEONT+ L
Nl N2 a (K (K
N=[ T}, =1l (2.40) . N NG
N3 Nj +xENK=| T (2.9)
RE R
and 3 1

No= —T-IRT No=T-1=NT N —RT R Q= NT where the X3 matricesﬁlf”, i=1,2,3 are the submatrices of the
! P2 2r 3 (é.4c) 6x6 matrix N; CX is the binomial coefficient.
Before going further, we like to describe some important fea-
Qik=Ciix1» Rik=Cik2» Tik=Cjze. (2.4d) tures of the identity(2.6) which ma)r/]c b)e helpful for the under-
; tanding of the following derivation(1) All the matrices con-
'Isllr(ii.t@ltf:ﬁezun%eirr?\(lzgststands for the transpose, and the SlJpezisted in the left-hand side of the identi®.6) are complex, while
It should be noted that the solutions given(&h2) are derived those in the r!ght-hand side are reg@) For the‘degenerate mate-
under the assumption that,, a=1,2,3, are distinct. When the "1alS Whose eigenvalugs, are repeated, the eigenvector matrices
' I J%Fnd B may not exist and hence it is difficult to calculate the

material eigenvalues are repeated, it is possible that we can . . . ;
) ; . ! . -hand side of the identity2.6). However, all the real matrices
find three independent eigenvectors to construct the eigenve ihe right-hand side of the identiti2.6) are related directly to

matricesA and B. To overcome this degenerate case, a sm . .
perturbation of the material constants is usually introduel in %ﬂe material constants and no eigenvalue problems need to be

numerical calculation, or a generalized eigenvector is introduc§8lved' Hence, even for the degenerate materials, they can st||l_be
to modify the formulation given ir2.2) (7)) calculated easily without further efforts. Therefore, even our basic

If t is the surface traction at a point on a curve boundary, th%?lrmulatlon given in(2.2) are derived based upon the assumption
hat the material eigenvalues are distinct, if our final results are all

t=ddl ds, (2.5) expressed in terms of the real matrices sucN aefined in(2.6c),

y can be applied to any kind of anisotropic materials including

degenerate materials such as the isotropic materials.

f the undetermined functiof(z) is approximated by a polyno-

0mial such as

the direction such that, when one faces the direction of increasi

s, the material is located on the right-hand side. We see(#hai

are special cases ¢2.5 when the boundary is a plane parallel t

the x,-axis or thex,-axis. f(z2)=cot{{(z )1t ... +{(Z))cy, (2.10)
One of the special features of the Stroh formalism is the iden- )

tities which transform the complex functions into real form exEd- (2.28) will become

wheres is the arc length measured along the curved boundary&a;

pressions. With these identities, the mathematical manipulation n
becomes easier and the real form solution becomes possible. An u:22 Re{A((Z))el,
identity which plays an important role in our later formulation is k=0 “
now listed belowm[8]). n (2.11)
AUZBT AZDAT) 1., - $=22, Re(B((z{))od-
== —iNy), . =
B((Z)BT B(EpaT] 2" (N (2

Note that the coefficients, ,k=0,1, . .. n are complex numbers.
where Realizing that any complex number contains two real numbers
combined together by the imaginary unit (=1, for the conve-

N _t J'WN(w)dw= s M (2.60) nience of derivation we may replacg by two real column vec-

° 7w, L S tors g, andh, such that
and o=ATg,+Bh,, g, hy:real (2.12)
Nlel +%,N. (2.6) The arbitrariness of the complex constagitsvill not be restricted

by the replacement of two real constagisand h,, because the
In the above, the angular brackgt,, )) denotes the diagonal ma- eigenvectors contained in the eigenvector matriéeand B are
trix with the diagonal components varied according to the suindependent each other if their associated eigenvalyeme dis-
script @. The real matrix functiolN(w) is related toN by N(0) tinct.
=N. The general definition dfi(») is the same as that shown in  Substituting(2.12) into (2.11) and using the identities shown in
(2.4 except that all the submatricéé(w) is calculated based (2.6a), a real form solution for the displacementsnd the stress
upon the real matrice®(w), R(w) andT(w) which are defined functions¢ can be obtained as
as

u n h n N(lk) ﬂ<2k) h
Qik(@) = CijisNiNs» Rik(@) = CijshjMs, Tix(@) = CijesmM; M, ( }22 Nk{ k}=2 NN T[ k]: (2.1%)
(2.7a) o & Lo &R /Pt le
where or
N(w)=(cosw,sinw,0), M(w)=(—Ssinw,cosw,0), [u}: ho] A{hll nzlhz] "n{hn)
(2.7M) o g +N o +N ol T ... +N ol (2.1%)

and w is an arbitrary real parameter. When=0, one can show Now, all we have to do is determining the unknown real coeffi-
that (2.7) is equivalent to(2.4d). It has been prove{9]) that the cientsh,,g,,k=0,1,2 ... ,n by satisfying the boundary condi-

three real matriceS, H, andL given in(2.6b) are also related to tions for the given problems. The problem is now solved approxi-
the material eigenvector matricdsandB by mately in principle. An alternative approach which follows the
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spirit of the finite element method is dividing the entire body into 2 (x® x2)
several small subdivisions and assuming the arbitrary function

f(z) to be a lower-order polynomial in each subregion. This is

what we like to explore in this paper. Based upon this concept, we

will show two simplest elements in the next two sections. One is

approximated by linear function in each subregion, the other is

approximated by quadratic function in each subregion. That is,

[ ct+((z,))ch, region 1 1 JE— 3
2 2 .
cst((z,))cy, region 2 —
0 << >> 1 g (Xl(l)’ X;”) (le' X2(3))
()= : (2.14) (@ "
| 5+ ((za))cl,  region n
in linear element. . i
t 1
([ o+ {(za)eit((22)ch,  region 1 —
Cot((z))CE+((22))c5,  region 2 g
(b)
Fig. 1 (a) Linear triangular element, (b) traction distribution
| o+ ((za))C1+((22))c5,  region n for the linear element

in quadratic element.

, R = x0T+ x0N,
3 Linear Elements ' _ (3.3)
By choosing the unknown functidifz) in each element to be a NG =xg'N,, 1=1,2,3.
linear function as that s_hown i2.14), from (2.13) the displace- Throughout this paper, the symbols with the supersciiptsle-
ments and stress functions for each element may be expressef s the values calculated at ndd&rom ([10]), we know that the

u h (h, fundamental elasticity matricé$,, N,, andN5; have the units of
( }z[ 0] N{ ] (3.1) 1,1E andE, respectively. Herek represents the Young’'s modu-

¢ % % lus. Therefore, the transformation matrix relating, and
or (hy,hy,0;) is doomed to be numerically ill-conditioned. To avoid
R R this situation, we nondimensionalize the matrix by the following
u=hy+N;h;+Nygy, way:
é=0o+N3h; +N]g, . (32) Gy [ R REVE, | h;
Before converting the above expression into the finite element y =4 u®@}=| I N2/, NZE,/I, ot i
formulation, the physical meaning of the zero and first-order terms u® -3 “ 3 lo
have been studietsee Appendix The discussion shown in the I NP7, NPE E %
Appendix reveals thdt, represents rigid-body translation, and the (3.4)

second component di; represents rigid-body rotation. All the .
other components df; andg, represent constant strain. where |, and E, are, respectively, the reference length and

In addition to the above discussion, the continuity among el§0uUng’s modulus. By inversion, we have

ments is an important problem for the finite element formulation. h
In order to satisfy the continuity conditions, we try to represent ©
the displacement and stress function in terms of the nodal dis- lohy =
placement. To this end, the transformation matrix between | =Nuy, 33
(hy,h1,0;) and the nodal displacements should be found. By us- E—Og1
o

ing the triangular element with nodes 1, 2, and 3 shown in Fig.
1(a), and substituting the positions of nodes 1, 2, and 3 into Eghere

(3.2);, we have )

IR R Ny N Ny I NP, NYE /I,

(1 I ) A

. - fl N=| Ny Ny Np|=|1 NP, NPE/,

Ju@b_[ 1 N® R@|[!h 33
= - 1o e 33 Ne Noo N O
u NG RN Nap Naz Ng NP, NPE /I, -
1 2 3

where Back t0(3.2), we now have
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u=[l N1/|o Nonllo]NUn, Therefore, the vector of the nodal forcgsmay be written as

N N IN (1
d=got [N, AT ~N21/|o ~N22/|o ~N23/|o N §(|21t(21)+|13t(13))
NaiEo/le NaEo/ly  NagEo/lg t® 1
(3.6) = { 120 ={ (1t 414) b (39)
With the stress function expressed by the nodal displacement, the t®
traction along the line connecting nodesndj (see Fig. 1)) can 1 s o
now be calculated by usin@.5) and(3.6). That is { §(I13t( ) +13,432) )
t“”:z—(b By employing(3.7) and(3.9), we now have
S
- - - ta=Kup,, (3.10n)
dT\l dT\IT Nai/lg Nao/lo Nas/l,
=|— —_— - - - u ,
ds 7 ds | NyEo/ly NgEolly, NagEollo) Ku Kz Kig
(3.73) K=| Ko Kz Kyl (3.1)
where K31 K32 K33
d dx,  dx, The submatricex;; of the element stiffnes& can be written
—NT=—=1+—==N] explicitly as
dsM1Tgs ' as N XPlCty
(3.7) 1 T
L Kij=3 (ARSRy + EARY Ry, (3.10)
ds ° ds 0
and where
SR . S PN AR = (43 V1 + () N, AR = ()N,
ds l ' ds Iy (3.10d)
| o B9 and
l;; is the length connecting nodésandj. Since the traction is
uniformly distributed along the straight boundary for the present (Ax)P=x?D—x3  (Ax)@=x®—x{
linear element, the resultant forces along this line contributing to (3.1%)
nodesi andj can be considered to be equal. That is, (Ax)@=xV—x? =12,
t(i):t(j)zljt(ji) (3.8) The internal stresses at any point within the element can now be
2 ' ' calculated by using2.3), (3.2), and(3.5a). The results are
|
-1 . T . T T~
T (NaNastEoNiNgy) 7= (N3Nazt EoNiNgp) = (N3Nas+ EoNiN3g)
[0’1] _ o o o] u (3 l]a)
o, Eo~ Eo~ E,~ n :
T Na1 T Ns2 T Nas
o o o
I
where 4 Quadratic Elements
We now consider the next higher order approximation, i.e., the
0,={011,012,013",  0,={01,00,055". (3.110) second-order approximation. B2.1%), we have
It should be noted thadr,; and o, obtained above look like to u h h h
have different expressions. By knowing the structuredlpfand [ ]:[ O] “[ 1] ”2{ 2], (4.13)
N3 shown in([5]), it can easily be proved that they are really 9 1% % 9
identical. or
From the above derivation, we see that the displacements
within the element, the tractioh along the boundary, and the
internal stressesdf;,0;) can all be expressed in terms of the u=hy+N;h; +Nog; + N2 h,+ R g,
nodal displacement,,, as shown in (3.6), (3.7), and(3.11. The (4.1b)
element stiffness matriK which is the core matrix in the finite
element formulation is obtained ii3.10. It can also be seen that d=go+ N3h1+NIgl+ Ng2>h2+N<12>ng.

all these formulas are written explicitly and do not contain any

integrals. This feature may save us a lot of computational effort. Similar to the linear element, the next step is trying to transform
Moreover, the present element is valid for any kind of anisotroptbe expression in terms of the nodal displacements. Since we have
materials and considers not only in-plane deformations afiige sets of unknown coefficientd{,h;,9;,h,,g,), the most ap-
stressesuy; ,U,,011,0712,02) but also the antiplane deformationspropriate element should be four-noded quadrilateral element
and stressesug,o13,023). without internal nodegsee Fig. 2a)). To be consistent with the
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H 46 e o~ s
3 (x X Ni; N Niz Ny

@2
(7% x37) | R e
a1 Nz Niz Nz
-~4l N42 N43 N44
4 1 RO, RYE L, (R R VEQ 2]
1 (x4, x) | NP/, RPE M, (RPP+RPVENN2

I K@, RPE N, (N2 +RVE N2
I N@, NPEN, (R +RPVE )12

(4.4)
The unknown coefficientshg,h;,9;,h,) may now be expressed
as
ho
Iohl
lo =Nu,. (4.5)
E_gl
(o)
i i I5h,
(b) Similar to (3.7), the tractiont along the boundary connecting
Fig. 2 (a) Quadratic quadrilateral element, (b) traction distri- nodesi andj is (Fig. 2b))
bution for the quadratic element
t(“):%N h,+ %H%NT) +12/| x %H i N
ds e gs s 1) Yds " "?ds ) 3
dx, . 2 dx dx dx
+ X N2 |+ = | Xy | + | X2 + Xy |N]
, 2ds ° | E,| tds Tds "2ds) ¢t
node number, we need to reduce the number of unknown coeffi- 0
cients. The most common way in finite element formulatidri]) dXp < o7
is combining the last two terms by using one coefficient. Before +X2E N<1 'l ihy. (4.6)

combining the last two terms, one should note R and N

have different units. Knowing thaf10]) the fundamental matri-  Similar to (3.9), the nodal force,, may be written as
cesN; and N, have the units of 1 and B/ respectively, the

matricesN{? and N? defined in(2.9) will have the units ofi? 1 o o 1
and |2/E. Therefore, to avoid adding the terms with different g 212677+ ) +11y(2677 4 4]
units, we let
tv L (32), (32 1), 4(2D
) t(z) 6['32(2t2 +t3 )+|21(2t2 +t1 )]
| - _
12h,=="0,, (4.2) ) t® 1
Eo ne) & e 2157 + 1) + 15/ 2652+ 157)]

where |, and E, are, respectively, the reference length and l[l (2109 4 119 1| (2t(43)+t<43))]
Young’s modulus. With this choice, we now have only four sets g T et TS

of unknown coefficients corresponding to four nodes, and the dis- 4.7)
placement fieldu can be expressed as

wheret{!" andt{") denote, respectively, the values of the traction
at nodes andj along the boundary connecting nodesnd;j.

ho Similar to (3.10), the element stiffness matrik is obtained as
loho
u=[1 Nqi/ly NoEo/ly (N +RNSIEQNZ1S 1o K Kiz Kig Ki
E % Kar K Ky Ky
° K= , (4.8)
12h, Kai Kz Kaz Kz
(4.3) Kar Kaz Kgz Ky
In the following, all the derivations are similar to those de- K= AR, /1o+ ANT N Eo 1o+ (ARP"
scribed in Section 3. Hence, the detailed explanation will not be gl
repeated here, only the final results are provided. Similé3.&b), +E,AN{P )Ny 112 (4.80)
the transformation matriil for the quadratic element is now ob-
tained as where
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AR =(Ax) N5,  ART(Ax) D1+ (Axy) ONT,
(i) . .
ANG = La 20 P =0 + By 104 =)
+ap oy (X =x3 )+ B () =X TH) INg

H[Bii 108 =X+ B (X3 —x§ ) IND

o _ _ o (4.80)
ANE :[ai,iu(x(lﬂ)*xm)*ai,i71(X(1')*X(1|71))]|
4{au+ﬂ%”” X9+ By i 10D =)
+a|| l(x(l) )+B|| 1(Xg.i)7x<li71))]NI
) . ) o T
“‘[,Bi,iﬂ(x(zwl)_X(zl))"‘,Bi,i—l(X(z')_X(zI DN,
and
(AXl)(i) (X(I+1 (|*l)) (AXZ)“)_*(X (i+1)_ (ifl)),
1 (i) (J) 1 (i) (J)
a; :§(2X1 +xi7), Bi,j:§(2X2 +x57), (4.&d)

T 2
N =N3sN,+NJ,  NZ'=N3N;+NN;.

In the above, if the value of the superscript-(1) equals to zero,

AT S U U

S4H

o
O [
il

-

h

L Sk

[}
Oy

N S U S O T
/

a
O o
n
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h
Ou

o

G

22l

I I IR

(b)

it should be replaced by 4 which is the last number of nodes of tR@. 3 (a) An anisotropic rectangular plate subjected to uni-

present quadratic element.
Similar to (3.11a), the internal stressas; and o, are

o1=—[Ng NI 2[x;Na+xNZ T+ 2Ex;N] + 3N ]
No/le  Npfly  Noglly  Nallg
X | NgiEo/ly NgEolly NasEoll, NaEollg | Uy,
Naa/13 Naplth Naalls Nga/l3
. . (4.9)
0,=[0 | 2N3+2E,N]]
Not/le  Npoflg  Naglly  Naallg
X | NgiEo/ly NgEolly NasEoll, NaEollg | up,.
Naa/13 N3 Naglls Nga/13

Although the formulas derived in the previous two section
look complicated, they are all explicit real closed-form expres
sions and do not contain any integrals. This really helps a lot
numerical programming shown next.

5 Numerical Examples

Based upon the usual finite element procedures and the forn
lations derived in Sections 3 and 4, a computer windows progre
was coded by using the FORTRAN and Visual Basic language
To save the space of this paper, one may refef1@]) for the
detail programming techniques and numerous examples. In ti
section, only two simple examples are shown to illustrate the pe
formance of these newly developed elements. The first check
our written computer program is the problem with uniform stres
field whose solution should be exact no matter what element st
division is made. The second one is the stress concentration pr
lem of which the fine meshes near holes are needed to ge
convergent solution. To show the versatility, in these two prot
lems we include the cases of in-plane and antiplane problems, ¢
the anisotropic and isotropic materials. The main reason of inclu
ing these special features is as follow$l) the “two-
dimensional” used in our paper title includes not only the in-plan

form tension, in-plane shear, and antiplane shear (patch 1); (b)
an anisotropic rectangular plate subjected to uniform tension,
in-plane shear, and antiplane shear (patch 2)

N
N\
o=5000] 1b/in
[ A
[ S - N N N\ w ™~
: N 103\ /ﬂD An 33 /95\ & N
WZ\A ks 17 EALRWANET] 100 87 SZ i
\\ A% ﬁ\ nd /ne m\ !Ul\\/qs\ AN /ﬁ// .

000 ()Unn()nn()
e 7/ v

@ =5000
,‘_

2

I (-
OO ()()(/) [OIOIKSIONG)]

(o)
Fig. 4 (a) A linear finite element mesh for a quadrant of the
Sate with a circular hole under uniform tension, (b) a quadratic

but also the antiplane problems and the problems where in-plaitte element mesh for a quadrant of the plate with a circular

and antiplane deformations couple each otf@rthe “anisotrop-

Journal of Applied Mechanics

hole under uniform tension.
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0.01201 in
° Exact solution for infinite plate 4>‘ ‘4—
(Timoshenko and Goodier,1970) ¢
20,

0.00319 in.

124 elements (NASTRAN) prm—
--—-—= 124 elements (Linear SFEM) s + ?
5 ksi — — — - 84 elements (Quadratic SFEM) 0.00286 in 8
\ o, 6
n
T
2 r
. Py o i .
—~= HILHHLHHLl (in) fo
1 1 8 -
* 5 (ksi) 61 5716
m
@) = 6848 1 oo
0 F 3454 9111 ps
. Exact solution for infinite plate 240022 20 -8 -6 -4 <12 10 8 -6 4 2
(Hwu,1992) .
— 124 clements (NASTRAN) —» | (in) ’4—
————— - 124 clements (Linear SFEM) 0.01231 in 3
5 ksi — — — - 84 elements (Quadratic SFEM} =% (a) 0.00245 in
\ 0.01528 in
‘ﬂ ’4_ 0.00155 in
. # . :
Nf!H;HHLHHWH\Jl 0.00291in 118 T
P 1 15 0
- s ., 16
E (ksi) L
(b) Ty 12t
. . (in) {10
Fig.5 (a) Comparison of the normal stresses on two edges for
the plate made of isotropic materials, (b) comparison of the 8 r
normal stresses on two edges for the plate made of orthotropic o |
materials. 5652
4k 7045
8439
2 | 2865 9832 psi
ic” which need not have any material symmetry restrictions als
includes the degenerate cases of which the material eigenval i o T T ;x 2
are repeated such as the isotropic materials. 24 220 -8l -li' '1)2 oos s j
m
Example 1: Uniform Stress Field. Consider a rectangular —>\<—
0.01610 in 0.00408 in

composite laminate subjected to a uniform load along tr(b
boundary edgegéFig. 3. The uniform load includes the in-plane

tension o3;=1000 Ib./in., o3,=2000 Ib./in., in-plane sheary, Fig. 6 (a) Deformed configuration and Von Mises stress con-
=30001Ib./in. and antiplane Shearg(lgz 4000 Ib./in., ggs tour for the plate containing a circular hole (isotropic case ), (b)
=5000 Ib./in. The laminate has ply orientatif®'30/—30] which ~deformed configuration and Von Mises stress contour for the

will behave as an anisotropic material. Each lamina has a thidRt€ containing a circular hole  (orthotropic case )

ness of 0.04 in and is composed of graphite/epoxy whose material

properties are: E;=26.25<10° psi, E,=1.49x1P psi, G,

=1.04x 10° psi, v1,=0.28. The length and width of the plate aredition will be assumed in our finite element modeling. Due to
|=16in, h=4 in. To ensure the exactness of the solutions for tfégouble symmetry, only a quadrant need be analyzed. A linear
problems with uniform stress field, several different patches éfement mesh with 124 elements and 80 nodal points and a qua-
elements(such as Fig. Bhave been tested and the Stroh finitgratic element mesh with 84 elements and 102 nodal points are
element solutionglinear or quadratic elements discussed in thishown in Figs. 4a) and 4b). The roller boundary conditions are
papej really coincide exactly with the exact uniform stresglso shown to simulate the symmetry condition and to restrain the
solution ([12)). rigid-body movement. The results for normal stresses on two

] ) edges are shown in Figs(a8d and 3b) in which the exact solu-
Example 2: Stress Concentration. After the elements passediions for infinite plate€[13,14)) and the numerical solutions from

the simple test of uniform stress field, a more realistic test such@% commercial finite element code NASTRAN are available for
a circular hole in a rectangular plate subjected to uniform tension

(oc=50001b./in.) is considered. Two different kinds of plate are
tested. One is an isotropic plate made of aluminum whose pr
erties areE=10" psi, G=3.85x 1(° psi, »=0.3. The other is a
fiber-reinforced composite plate whose properties &g=7.8

o -
'Pable 1 Comparison of the computation time for the stress
concentration problem  (on K7-600 PC with 128MB RAM )

Computation time

X 10P psi, E,=2.6x10° psi, G;,=1.25x 10° psi, v;,=0.25. The
length, width, and thickness of the plate are, respectively,

=48in., h=40in., t=1in. Since the thickness of the plate is

Isotropic plate

Orthotropic plate

relatively thinner than the length and width, the plane stress con84¢lements (Quadratic SFEM)

474 | Vol. 68, MAY 2001

124 elements (NASTRAN) 6 sec. 6 sec.
124 elements (Linear SFEM) 3 sec. 3 sec.
2 sec. 2 sec.
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comparison. The agreement is satisfactory except for the points on 1 0
the circular hole boundary, which can be improved by more fine —_ N0 1
meshes near holes. Figure 6 is a diagram showing the deformed hy oN; 0 Tk 0 ’ (A4)
configuration and the Von Mises stress contour, which is also
agree with the plot shown by commercial finite element coqﬁ

NASTRAN. Since this simple example can also be solved veryherek Is an arbitrary constant ard; " is defined as

well by using the commercial finite element, to show the advan- 1 0 0

tage of the present method their corresponding computation time

is listed in Table 1. From this result, we see that our method really NS UNg=NgNS V=1,, 1,={0 0 O0f, (A5)
has the potential to improve the efficiency and accuracy. 0 0 1

6 Concluding Remarks At first glance, it looks ridiculous to have a nonunique solution.

Through the numerical examples shown in the last section, V@ further studying the solution relating
know that the Stroh finite element is accurate enough to perform
the usual finite element task. Inheriting from the Stroh formalism, 0
this newly developed finite element is valid for the generalized ho=00=0:=0, and h;={ K¢, (A6)
two-dimensional anisotropic elasticity problems which include in- 0
plane and antiplane problems with the most general anisotropic
(includes monoclinic, orthotropic, and isotropic, ¢tmaterials. Wwe see that
Moreover, this element satisfies both of the compatibility and

equilibrium conditions within each element. The derived results —kx;

show that the stiffness matrix can be written explicitly and does u=x1h;+x,N;hy =4 kxg ¢,

not contain any integrals. Thus, the efficiency and accuracy com- 0

pared with the conventional finite element is an interesting topic (A7)
for the future study. Our preliminary numerical comparison for @»=x,N3zh; =0,

the problem of stress concentration supports our observation. It is

also hoped that through this work similar studies combining thehere the second equalities are obtained with the help of the

analytical work with the numerical techniques can be raised sructures oN; andN; ([5]). By the expression shown above, it

improve the existing technology. can easily be understood why we have a nonunique solution be-
cause the rigid-body rotatiokis not fixed for our present prob-

Acknowledgments lem. With this presentation, it is noted that the rigid-body rotation
is included in the first-order approximation. Therefore, when

The authors would like to thank the support by National Scimplementing the finite element procedure, not only the rigid-
ence Council through grant NSC 82-0401-E006-088 and NSC 8§ody translation h, but also the rigid-body rotationh;

2212-E-006-022. =(0,k,0)T should be fixed in order to have a unique solution.

Appendix

From (2.3), we know that the stresses are the first derivative ‘Pieferences
the stress function. Thus, the stresses are identical to zero for

zeroth-order approximation and the displacement is constant folt] Lekhnitskii, S. G., 1963Theory of Elasticity of an Anisotropic BodIR,
Moscow.

the entire field. T_herefore, the zeroth-order term represents thej stroh, A. N., 1958, “Dislocations and Cracks in Anisotropic Elasticity,” Phi-
rigid-body translation. los. Mag.,7, pp. 625-646. N o
We now consider the case of the uniform stress= o with alll [3] Ting, T. C. T., 1996 Anisotropic Elasticity—Theory and Applicatigr®@xford

— Fr Science Publications, New York.
the other stress Componemﬁ_o and all the ”gld'bOdy transla- [4] Zienkiewicz, O. C., and Taylor, R. L., 198Fhe Finite Element Method—

tions are fixed lip=go=0). By (3.2) we have Volume 1: Basic Formulation and Linear Problem&rd ed., McGraw-Hill,
R " New York.
¢=N3h;+Nlg,. (A1) [5] Ting, T. C. T., 1988, “Some Identities and the StructuresNyfthe Stroh
Formalism of Anisotropic Elasticity,” Q. Appl. Math46, pp. 109—-120.
Use 0f(2.3) may lead to [6] Hwu, C., and Yen, W. J., 1991, “Green’s Functions of Two-Dimensional
Anisotropic Plates Containing an Elliptic Hole,” Int. J. Solids Strugf, No.
13, pp. 1705-1719.

o O o

031 (A2) 65-76.
[8] Hwu, C., and Ting, T. C. T., 1990, “Solutions for the Anisotropic Elastic

012
U2 =
032 tropic Elastic Solids,” Phys. NorvZ, pp. 13-19.

[10] Hwu, C., 1993, “Fracture Parameters for Orthotropic Bimaterial Interface

9,=0, N3h1= —g{ 0}, (A3) [12] Wu, J. Y., 1999, “Stroh Finite Element Design for Two-Dimensional Aniso-
0 tropic Elastic Bodies and Its ApplicationsM.S. thesisInstitute of Aeronau-

g11 ag
_ —_ - T [7] Ting, T. C. T., and Hwu, C., 1988, “Sextic Formalism in Anisotropic Elastic-
021 8 d’,Z N3hi+N30;, ity for Aimost Non-semisimple Matrix N,” Int. J. Solids Struc24, No. 1, pp.
Wedge at Critical Wedge Angles,” J. Elas?4, pp. 1-20.
_ 4) _ [9] Barnett, D. M., and Lothe, J., 1973, “Synthesis of the Sextic and the Integral
1= 01 Formalism for Dislocation, Green’s Functions and Surface Waves in Aniso-
Hence, Cracks,” Eng. Fract. Mech¥5, No. 1, pp. 89-97.
[11] Reddy, J. N., 1984An Introduction to the Finite Element MetholllcGraw-
1 Hill, New York.
tics and Astronautics, National Cheng Kung University, Taiwan, R.O.C.
Note thatN in (A3) is a sigular matrix. The existence of solutions 3l L'iwosgfvn\k(g'r ks P., and Goodier, J. N., 19Teory of Elasticity McGraw-
to th_IS kind of problems has been discussed 8]), and its solu-  [14] Hwu, C., 1992, “Polygonal Holes in Anisotropic Media,” Int. J. Solids
tion Is Struct.,29, No. 19, pp. 2369-2384.
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Scattering of a Rayleigh Wave by
v conesen | @M EIAStic Wedge Whose Angle is
v § - Greater Than 180 Degrees

lowa State University,

136 Wilhelm Hall, The steady-state problem of scattering of an incident Rayleigh wave by an elastic wedge
Ames, 1A 50011 whose angle is greater than 180 degrees is considered. The problem is reduced to the
numerical solution of a pair of Fredholm integral equations of the second kind whose
kernels consist of elementary functions. Numerical results are given for the amplitude and
phase of the Rayleigh waves transmitted and reflected by the corner.
[DOI: 10.1115/1.1365156

1 Introduction tion scheme to account for this phenomenon. These results appear
ta be approaching the known limiting values for a 180-deg wedge

Hitherto, there have been a number of investigations into t : : ) g
problem of scattering of Rayleigh waves by an elastic wedg igcglastlc half-spageand a 360-deg wedgéa semi-infinite

Generally these methods derive equations for the problem whic In the next section the governing Fredholm integral equations

are then solved either numenca_lly or approximately. Knopnif are derived. In the last section the numerical results are presented
has reviewed many of the earlier efforts. Mal and Knog&f damd discussed
n .

give an approximate solution for wedge angles less that 180
grees. Momoi[3] considered the 90-deg wedge. Gautepgh|
considered wedges whose angles are less than 180 deg using BouDerivation of the Integral Equations

rier transform methods. Fujii6] in an extension of his earlier ) . .
6] The diffraction of steady-state waves by an elastic wedge

work gives results for a wide range of wedge angles. Using th . . .
Sommerfeld-Malivzhinetz method, Budaev and Bdgyg] have Wenose wedge angle is greater than 180 degrees is considered.

derived exact equations for this problem. They give corrected nyl€ location of the wedge; the coordinate system; and the inci-

merical results irf9]. ent, t_ransmltted and reflected §urface waves are sh_own in Fig. 1.
The method of solution used here is quite simple. First tHay using the free-spac_e Green's stress tensor, an integral repre-

problem is symmetrized. This reduces the number of the unknowgntation of the total displacementg(x, ,x,) is given by

displacements on the traction-free surfaces from four to two. Of U(Xq , X2)H(X)

course, the problem must then be solved twice—once for the sym-

metric case and once for the antisymmetric case. A free-space ) 2 * &

Green’s function integral representation of the displacements is =UL”(X1,X2)+E Tiz(X1 =Y, X2) Ui(Y,0)
used. This representation is valid in the entire plane, and not just =1Jo

in the region occupied by the elastic material. From this integral 2

representation, the tractions, dilataticln, and rotation are computed +2 Ti(j;;k(xltly,thzy)njUi(tly,tzy)] dy,
on a line just below the-axis (x,=0")—see Fig. 1. From the j=1

integral representation of the displacements, it follows that these k=12 21
quantities vanish fok;>0 and are unknown fox;<0. Next the Toe (2.1)
Fourier transform of these quantities is taken, followed by substitere, H(x)=1 if (x;,X,) is a point in the elastic material and
tution of a suitable representation of the Fourier transform of thg(x)=0 otherwise. The incident field is denoted by (X1,X2)
displacements;(¢) on the traction-free surfacg=0,x,>0. The  and since the incident field is a Rayleigh surface wave,
branch cut and Rayleigh polesaf(¢) are shown in Fig. 2. Apair i, y_0 The free-space Green’s stress tensor is denoted by
of Fredholm integral equations of the second kind is achieved b Thei t £2.1) is that it holds for all point
computing the jump across the branch cutiif¢). The kernels of ij:(X1,X2). The importance of2.1) is that it holds for all points
é,x2) and not just for points lying within the elastic material.

these integral equations consist of elementary functions and 5 mormaln: and tangent. to the lower traction-free surface are
continuous except for an isolated square-root singularity. T é‘ J gent; u

Fourier transform of the unknown tractions, dilatation and rotatiodl V&" by
on the linex,=0, x;<0 are continuous across the branch cut of n,=t,=sina, n,=—t;=—CoSa (2.2)

u;(£) and therefore do not appear in the Fredholm integral equa- .
tié)(ngs). PP g q where« is the wedge angle. To reduce the number of unknowns

The wedge angle is restricted to the range 189 deg to 327 da'ge. pr_oblem is divided into an antisymmetric{1) and symmet-
Beyond this range of wedge angles, numerical instabilities ardSg (| =2) problem. For the symmetric problem, the normal and
because a pole is approaching the contour of integration. T gential displacements on the traction-free surfaces are equal,

; i ; d for the antisymmetric problem they have the opposite sign.
roblem can be corrected by using a more sophisticated integfa-" = 4 .
P y using phist integ ubstitution of this result int@2.1) reduces the number of un-

Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF known;s tl)y_(:)l_ne Zalf’ bUtf tl:e_nzthe prOblem must be solved twice
MECHANICAL ENGINEERSfor publication in the QURNAL OF APPLIED MECHAN- (once for -, an ! onc_e ot=2). .
Ics. Manuscript received by the ASME Applied Mechanics Division, June 7, 2000; The rotation, dilatation, shear, and normal tractions are com-
fiEaI Ir(;:-vk;siorzj,dNov. zdlt Z?r?O.EAdstsoc:;a\tefEditor:LA. !(._IM::\l/I\./hDisl(;ussDion orrt1 thetpafpeputed from(2.l) on the Iinex2= — 52, —o<IX <%, These guan-
should be addressed to the Editor, Professor Lewis T. Wheeler, Department o - ; _
chanical Engineering, University of Houston, Houston, TX 77204-4792, and will tﬁ%les vanish fOI’X1>O and are_gnknown fcx1<o' Then.the Fou
accepted until four months after final publication of the paper itself in GhieRNAL !’Iel’ tr?nSform of these quantities is taken. The Fourier transform
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X, =0 wherekg=C,/Ccg andcy is the speed of Rayleigh waves. It is
convenient to consider the following three linear combinations of

(2.49-(2.5:

ODo—s Ui(é)- E By (£,71,72)U;(£)
T =i D3 i+(—1)iﬂogi (2.13)

u 26\ R(&) >~
g
s [a%(é) - 1654y1y2]u1<5>+452y y2a(é)
xJZl (= 1)Byj(£,71,72)U0(6) = 2671R(£)U5(6)
Fig. 1 Incident, transmitted, and reflected surface waves -D (2.14)

where

D=a%(¢)[y,D3 +a(é)Us(6)]-8&%y3¥2D, .

Figure 2 shows the poles and branch cutig(f¢), the Fourier

transform of the displacements on the upper traction-free surface.
wherek  denotes the wave number of longitudinal waves. Afterhe following representation af;(¢) is used:

taking the limit as6— 0, the result is

%{u(xl))}szfo exfg ik éxJu(x)dx, (2.3)

o uj AUl 1 (*w(2)

(&)= + - | 2=
21<—1>i+iBij<§,n,yz>U,-<§>+yflumg):D: eay T E 2w e
2

dz+BjF*(§)
(2.15)
2
Y IROU(E)+ D, Bj(£,71,7)U)(6)=D;,,  (2.5) , .
j=1 Ui =—Uuj=2kpyi(kR)/ k%, u,=ub=a(kg)/«% (2.16)

The first term in(2.15 represents the incident surface wave. The
B (£7 7)=(—1)z"1 Si—2&(1— & 2 next term represents the surface wave reflected and transmitted by
1(621.22)=(= 1)z 7a(£) 6~ 261~ &y) (2:6) the corner—recall that by symmetrizing the problem there is a

where

yi=(cylci+ &)Y c,lci— £)Y? (2.7) surface wave incident on both of the traction-free surfaces. The
constantA, is then given by
a(é)=k2-2¢%, k=c,lc, (2.8)
) A=R.+(-1)'T, (2.17)

Z bij(£,21,2,)U;(&), z=v  (2.9) whereR; and T, denote the reflection and transmission coeffi-

= cients for surface waves. The third term (15 is analytic ev-

) reNs PN : _ erywhere except along the branch cut shown on Fig. 2. The quan-
bij(£,21,22)=a(&) 6 +2(—1)'&(1- ) (Esina+z CO(Szaio) tity w;(£) is to be determined. The constajtin the last term of
' (2.19 is to be chosen so that;(¢) is finite até=«g. The func-

&=¢cosa—z sina (2.11) tion F*(£) is analytic in the upper half of the compléxplane. It
5 5 is easily computed in closed form by the Wiener-Hopf sum split-
R(&)=a%(§)+4£&%y1v2, (2.12) ting:

&;; denotes the Kronecker delta, angdandc, denote the speed of ()= y1(Kkg) (&)= y1(20)
longitudinal and transverse waves. The functids represent — F*(g)+F (&)= Lt 712 RISl 7; 0
the unknown Fourier transforms of the dilatation, rotation, and Kr—§& 7—§
tractions forx,;<0. These functions are analytic in the lower hal ; _ 12 -

of the complexé-plane, whileu;(€), which denotes the Fourier (ﬁll’::er?_t?; choicezo=r(1~1)™* has been made an&"(¢)
transform ofu;(x,,0), x;>0, is analytic in the upper half of the ;

3 ; . L Next (2.15 is substituted inta2.4), (2.5, (2.13, and(2.14).
complex &-plane. The Rayleigh functiolR(¢) satisfiesR(«g) The result contains no poles in the lower half of the complex

&plane. Then the difference ¢2.4) with i=1, (2.13 and(2.14)
evaluated af= — &,+10 andé= — &,—i0 is taken. In2.13 &, is
restricted to the rangé,> «, while in (2.4) and (2.14), 1<,

(2.18)

t Im(f) <«k. This yields the following Fredholm integral equations for
w;(€):
2
1 (- i
-1 Wj(§)+2 (‘ Z_J Wi(&,2)wi(2)dz+ Wi (&, — kr) Uy
' > k=1 Tl 1
U — X Re(¢)
+ AW (€ k) U+ Bijk(f)} =0,

Cj /e <& (2.19)
Fig. 2 Branch cut and location of Rayleigh poles of ui(é) a(&)W(&) +2Ey W,y (€)=0, 1<é<k. (2.20)
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When &<k, wy(§) is defined by(2.20. When the angle exte- Care must be exercised in devising a numerical integration
rior to the wedge is smaller than the angle of head waves, soseheme to solve the resulting Fredholm integral equations of the
additional steps are required to arrive (2t20. These are dis- second kind. For example, the stresses are singular near the corner

cussed at the end of this section. Here, (see Karp and Kardl11]). This singularity is different for the
symmetric (=2) and antisymmetricl& 1) problems. This sin-
Wik(£,2)=Vj(=&71,72,2) = Vi = €571, 72,2) gularity reflects itself in the behavior &¥;(£) as é— and has
(2.21)  peen accounted for.
wheres=sgn—¢£) and When the wedge’s exterior anglte,=27— « is less than the
head wave angler,=arccosk 1), some extra steps are required
v ) 2 ziBji(£,21,2,)bik(€.,21,2,) _ to achieve(2.20. After substitution of(2.15 into (2.4) wheni
ix(6,21,25,2 “ (@O +aE2,2)) 2+ &) §<—Kk =1, taking the difference of the result evaluatedtat— &,+i0

Also,

(2.22) andé=—§,—10, 1<¢,<«k gives

262, w(8)—(—1)'H(6—nag)w(8—nag)=0, 0<6<ay

\% k(§,z 4 ,Z)Z* Y (229)

e a(§)-asnz where n=1, H(#) is the Heaviside function, and withk
282,7,a(6)By(€,24,2,) =k cos6, w(#0) is defined by

(8%(&) +48°2,2,)(z+€) W(O)=a( Wy (E)+2EyWa(E), 1<é<k.  (2.30)

boy(€,21,25) Examination of(2.29 on the intervalyg< #<min(2ag,a;,) shows
+ W) —k<§{<-1. thatw(#) also vanishes on this interval. Thus eitlef6) =0, O
2 <6<ay, orw(6) satisfieq2.29 with n=2. In the latter case this
(2.23) process is repeated untiley= e, . Eventually this leads to the
conclusion thatv(6) =0, 0< < «,,, which by (2.30 establishes
(2.20.

Gik(6) =G (&) + ;8 (1+9)(Z3— kB[ (kR— ) (25— £2)]

(2.24) 3 Results and Discussion

where G () is the discontinuity across the branch cut of the The reflection coefficienR; and transmission coefficiefit, are
function Fji (&, v1,72) (see(2.2D). The functionF;,(¢,2,,2,) is  related toA; by A=R,+(—1)'T,, 1=1,2. Once the solution
defined by the right side d2.22 and(2.23 with the quantities w;(£) has been found, the constaAf can be computed from
(z+&) Yand @+ &) ! replaced byF* (&) andF " (&), respec- either(2.26 or (2.27) after using(2.25 to eliminateB; andB,.

tively.

These values should of course be the same. Here the maximum

For numerical stability of the solution .19, w;(«g) is re- value of the amplitude of their differences was found to be less
quired to be bounded. Thus the constaBfsare determined by that 0.0003 over the range of wedge angles considered. With Pois-

PR k=1

son’s ratio equal to 0.25, the amplitude and phase of the reflection
) 2 o 1 (- and transmission coefficients versus the wedge angle are plotted
lim (k3= | - 7 | Wik(§.2w(2)dz in Figs. 3 and 4, for 189 dega<327 deg. Beyond these angles

! the numerical scheme became unstable. For wedge angles less
_ than 189 deg a pole in the analytic continuation of the honhomo-
+ij(§,—KR)uL+A|ij(§,KR)u’k+ B Gj(£€) =0, geneous term approaches the contour of integration, while for
wedge angles greater than 327 deg a pole in the analytic continu-
ation of the kernel approaches the contour of integration. The
numerical integration scheme that has been used did not account

2

j=1,2.  (2.25)

Two more useful relations follow from evaluating eith@.4) for this behavior. For a 180-deg wedgan elastic half-spage
or (2.5 at é=—c,/c;. In order that the displacements on thdR.=0 and T.=1, while for a 360-deg wedgéa semi-infinite
traction-free surfaces have the right asymptotic behavior far from
the corner(see Gautesefl0]), u,(—1) andu;(—«) must be

finite. The unknown quantitie®; (£) are analytic near these

) 3
points. Thus, 80
a(1)uy(— 1)+ (—1)'[sin 2aU;( — cosa) +a(cosa)U,( — cosa)] 35— _
=0 (2.26) @ a0 - REFLECTION COEFFICIENT  __ ———" 7 -
_ _ N 5 25 - |
Uy(— k) — (—1)'[cos 2at;( — k cosa) + sin 2al,( — k cosa)] = -
v 180 |— - -
=0. (2.27) @ yd
e e _
Next (2.15 is substituted intq2.26) and (2.27). None of the re- =y
sulting integrals are Cauchy principal-value integrals. 30 | TRANSMISSION COEFFICIENT
To obtain the final integral equations the constatsB,, and
B, are eliminated from(2.19 by using(2.25 and(2.27) whenj 45 = —
=1 and by using2.25 and(2.26) whenj=2. From the integral ) | | | | |
equations it follows thatw,(£)=0((c,/c;—£)Y) near & 180 210 240 270 300 330 360
=c,/c;, j=1,2 and thath(g):O((l—g)ld) nearé=1. It is WEDGE ANGLE (DEGREES)

convenient to introduce new unknown functioiig ¢) defined by

Wl(g)zylyzwl(g)/gz, Wy( €)= yiWo(&)/E. (2.28) Fig. 3 Amplitude of the reflection and transmission coeffi-
cients versus wedge angle (in degrees ) for Poisson’s ratio

Then the kernels of resulting integral equations are continuou®.25. The exact values for a 360-deg wedge are indicated by
except for square-root singularities zat 1,«. an asterisk.
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1.0 tion coefficient is small. Also, when the method presented here is

| _| used to obtain numerical results for steel, good agreement is found
with the corresponding results of Budaev and Bgglg except for
08 — ] the phase of the reflection coefficient. Note thaGhand|[7], the
- TRANSMISSION COEFFICTENT - phase of the reflection and transmission coefficients are defined as
205 L _|  the negative of that used herein.
—
e;d - _
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Boundary Element Formulation
e.w.tenrani | fOF Thermal Stresses During

Mechanical Engineering Department,

Amirkabir University of Technology, PUIsed Laser Heating

Tehran, Iran
L. G. Hector, Jr_1 Pulsed lasers are used in a variety of materials processing applications that range from
Surface Science Division, heating for metallurgical transformation to scribing vehicle identification numbers on
Alcoa Technical Center, anodized aluminum strips. These lasers are commonly configured to deliver a large quan-
Alcoa Center, PA 15069 tity of heat energy in very short time intervals and over very small areas due to the
manner in which radiant energy is stored within, and then released from, the laser
R. B. Hetnarski resonator. At the present time, little is known about the effect of pulse duration on
Department of Mechanical Enginesring, thermomechanical distortion during heating without phase change. To explore this issue,
Rochester Institute of Technology, a boundary element method was developed to calculate temperature, displacement, and
Rochester, NY thermal stress fields in a layer that is rigidly bonded to an inert semi-space. The layer
Fellow ASME absorbs thermal energy from a repetitively pulsed laser in the plane of its free surface.
The effects of two pulse durations, which differ by four-orders-of-magnitude, were exam-
M. R. Eslami ined in this work. The temporal profiles of ultrafast pulses of the order of ten picoseconds
Mechanical Engineering Department, (such as those emitted by a mode-locked laser), and pulses of the order of tens-of-
Amirkabir University of Technology, nanoseconds (such as those emitted by a Q-switched Nd:YAG laser) were mathematically
Tehran, Iran modeled using a rectified sine function. The spatial profile of each pulse was shaped to
Mem. ASME approximate a Gaussian strip source. The equations of coupled thermoelasticity, wherein
the speed of mechanical distortion due to material expansion during heat absorption is
finite, but the speed of heat propagation within the layer is infinite, were solved for both
pulse durations. The resulting temperature and stress fields were compared with those
predicted in the limit of no thermomechanical couplingPOI: 10.1115/1.1365155
1 Introduction arise during a laser processing application to establish guidelines

Theoretical and experimental investigations of laser heating qu;r appropriate beam settings and to ultimately achieve desired

. : : terial properties.
materials, and resulting thermal stresses, began to appear in . . . .
: ' h : ; . - heoretical studies of thermal stresses in laser processing have
literature not long after the first working laser was invented in tIa't()eeen directed toward a wide variety of applicationspand matgrials.
early 19605([1)). Since that time, mterest_ in the effects of b.OtI]: example, Welsh et a]9] calculated thermal stresses in the
continuous wave and pulsed laser heating on the propertlese())( reme cas’es of an elastic half-space and a thin film under

metals, ceramics, and semiconductors has been mamtamedStg'ady-state heating with a Gaussian laser source. Uglov et al.

part, by_the rapid growt_h of the microel(_ectronics i_ndustry. Anev h )| addressed the problem of predicting thermal stresses in a
increasing demand for improved material properties at smaller tallic cylinder due to pulsed laser heating. The thermoelastic

smaller length scales has also created an incentive for Contm”irqe%ponse of a half-space subjected to volumetric heating by a con-

thermal stress levels through control of critical laser Processil irated heat flux for various values of absorption coefficient was

parameters such as power density, pulse repetition rate, dH tived by Germanovich et dl11]. Suh and Burgef12] devel-
cycle, and depth of focus. '

a very short ;”I?e |nt§rval. T_helrmal_streshses result _duefto trlgs rapCer pulsing and developed a fatigue criterion based on the results
movement of heated material against the constraint of Colder, gt air model. Fesenkid 4] developed a model to predict thermal

beit deformable surrc;]undlnr? material. Thermom_?ﬁhaglcal %nergéfesses due to a periodic, volumetric heat source in a rectangular
transport may occur through wave propagalid)): This depends o yigm and applied his model to understand the thermomechanical

upon the duration of each laser pulse and the efficiency wifignonse of a potassium dihydrophosphate monocrystal. The ther-
which electrons in the material transfer radiant energy to the sufe| stress field in an elastic half-space due to a single pulse from
rounding lattice([3]). If thermal stress levels are uncontrolled, |5ger was derived for the general case of a mixed-mode structure
during laser processing, then a variety of material and procgssam py Hector and Hetnarski5]. Solutions for thermoelastic
related problems, such as crack nucleation and propagdHen gyress and displacement fields in thin films and thick layers that
6]), and undesirable microstructural transformatigis8]), may  gpsorb thermal energy from a repetitively pulsed laséth axi-
result. It is therefore useful to predict the thermal stress levels ﬂ@rmmetric geometjy were reported by Kim et al[16]. The

coupled solution of a two-dimensional domain subjected to ther-
Currently at General Motors Research and Development Center, Mail Code 48Bal shock from a laser source was studied by Tehrani and Eslami

106-224, 30500 Mound Road, Warren, MI 48090-9055. [17]. None of these papers considered the effects of different
Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF . . . . .

MECHANICAL ENGINEERS for publication in the ASME GURNAL oF AppLiep  PUISE durationgeither with or without coupling of the thermal and

MECHANICS. Manuscript received by the ASME Applied Mechanics Division, Junenechanical fieldson predicted temperature and stress fields.

9, 2000; final revision, December 5, 2000. Associate Editor: A. K. Mal. Discussion |n the present paper, we calculate the thermal stresses in an

on the paper should be addressed to the Editor, Professor Lewis T. Wheeler, De -t . . i _
ment of Mechanical Engineering, University of Houston, Houston, TX 77204-479@‘%13“0 Iayer bonded to a thermomeChamca”y inert semi space us

and will be accepted until four months after final publication of the paper itself in tHé19 & bpundary element fo'rmumtid_ﬁ_ee Kim et al.[lG] for a
ASME JOURNAL OF APPLIED MECHANICS. discussion of the technological significance of this problehne
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free surface of the layer absorbs thermal energy from a repeti- T=0 at t=0 (4)
tively pulsed laser in its surface plane. The energy equation, and

equation of motion, are solved for the case of an ultrafast pulse (2wt ly]\3

train, wherein the pulse duration is of the order of ten picosec- T= sm(t—) exp[ 72.2(|—) J at x=0 (5)
onds. These equations are also solved for a pulse duration which s

is of the order of tens-of-nanoseconds in order to compare differ- oT

ences in the material response due to the picosecond pulse dura- &—XZO at x=| (6)

tion. A boundary element method is applied to the solution of

these equations for the temperature, displacement, and stress fields T=0 aty—+o (7

as functions of time and position assuming that the thermal and

mechanical fields are coupled. Coupling of the thermal fields is

due to finite transport of mechanical energy due to rapid absorp- W=0 aty—0. (8)

tion of thermal energy from the laser source followed by material

expansion against colder surrounding material. Alternatively, heBite coupling of Eqs(1) and(2) implies that heat absorbed in the
transport is assumed to be infinite. Key differences in the laysurface plane of the layer produces a longitudinal wave through
displacements and stresses due to the picosecond and nanosedibatétion: Material which lies ahead of the wave is in a state of
pulse trains are carefully examined both with and without cowompression, whereas material in the wake of the wave is in a

pling. state of tension. Generation of the longitudinal wave during
pulsed laser heating is strongly dependent upon the pulse duration,
2 Coupled Formulation ty. Note that the energy equation does not include a thermal

igée/rtia term(i.e., Ty) since the speed of heat propagation in the

is ':)t(t;%’dt?g 2?&?&??8{;}3’fﬁgﬁ]rn;(ila;ti'gvlgyerjggg?;ge':'gl:b er is infinite. For pulse durations of the order of a few nano-
P P y P . conds, the classical Fourier heat conduction model provides, in

layer extends from-e<y<, and has a widthl, along the .most cases, an adequate approximation of the thermal(figJd
positive x-direction. The layer is rigidly bonded to an inert semiz, Jwever. for a pulse durations of the order of a few picoseconds
space along_—l. Heat from a constant frequency Ia§er pulse trallrg is likely that the thermal inertia term is important thereby re-
is absorbed in the plane of the free surface and |nstantaneouilléx

. . X . rin eneralization of the equations of thermoelasticit
diffuses throughout the material. The layer is assumed to be |n§ 1 292).gNevertheless we shall ig(]qnore the thermal inertia terr¥1

lated anc=1. r both pulse durations in order to reveal significant differences

. f
In the absence of body forces and volumetric heat generatl(%ié o - .
the governing equations for dynamic, coupled thermoelasticity tween the laser-irradiated material response as predicted by the

4 . . present coupled and uncoupled formulations. Equatimepre-
the time domain may be written as sents the temperature profile on the free surface of the layer due to

(N )y i+ pu; j—pli—yT ;=0 (1) arepetitively pulsed laser: Thermal absorption into the surface is
) assumed to be perfe23]). It consists of an oscillatory temporal
KT jj—pCeT—yTou; ;=0 (2) profile and a Gaussian spatial component. The temporal profile of

each pulse is assumed to follow a rectified sine function: This
profile approximates the nearly Gaussian temporal profile associ-
ated with many pulsed solid state las€f24,25). Each pulse
vector which consists of two components, itg.the displacement achleves_ peak power_ai:tWIZ. l\_lote_ that each pulse is _|mmed|- )
along the layer axisy, andv, the displacement parallel to theately activated .followmg deactl\./atlon. of the preceedilng pulse:
The pulse duration and pulse train period are thus equivalent. The

layer surfaces along, p, T=T(x,y,t),Ty,k,c. are the mass den- : . . . h ) .
sity, reference temperature, reference temperature, thermal C%Q-dlmensmnal spatial profile of the beam is a Gaussian strip

ductivity, and specific heat at constant strain, respectively. Equsagurce since It consists of a Gaussian profile alongitizection
tions (1) and (2) are coupled through the stress-temperatu Ith no variation along for anyy. The surface temperature peaks
modulus, y, where alongy=0. Clearly, this distribution differs from the more com-

mon cylindrically symmetric mode structure associated with many

y=n(3N+2u) (3) laser beams. It is, however, similar to the oblong beam profile
) - . mitted by repetitively pulsed excimer las€36]). Alternatively,
Zrdggﬁéﬁgﬁgzﬁg'em of thermal expansion. The thermal boun f a cylindrically symmetric laser beam is passed through a cylin-

y drical lens, the output will resemble the spatial profile given by
Eq. (5 ([27]). Beam spreading methodologies of this type are
discussed in[28)). Note that the 2.2 “shape parameter” in Eq.
(5) guarantees that the spatial component of the temperature dis-
tribution approximates a Gaussian profile along yheirection.
' Equation(6) states that the boundary alorg-| is insulated.
Inert Semi-space The mechanical boundary conditions are

where Eq.(1) is the equilibrium equation, Eq2) is the energy
equation, and a dot genotes time differentiatiph8,19). Note
that A, u are the Lameconstants([20]); u; is the displacement

i
\

,\
<
3
S

u=v=0 atx=I 9)

u=p=0 aty—=*x (20)

Tyt
v whereu=u(x,y,t) andv=uv(x,y,t) are the displacement compo-

nents along the positive andy-directions, respectively, in Fig. 1.
The time for heat to diffuse across the layer thickness is given
by 1%/« wherea is thermal diffusivity. If

| 2

at,,

— | —»

\\\\\\ NN

then heat conduction along the layer thickness is negligible and
Fig. 1 Layer subjected to thermal load from pulsed laser the layer can be treated as a thin film.

Journal of Applied Mechanics MAY 2001, Vol. 68 / 481



It is_ con\_/enien_t for the nu_merical calculations to introduce the T —'T—cu,- =0 (18)
following dimensionless variables: '

where for convenience we have dropped the hat notation in Egs.

. i +2up)U; ” . E N ;
K= i; §= X; t= tc_l; & _ i 0; :M; (16) and(17). The dimensionless coupling coefficient is defined as
B B 7To ByTo 5
Toy
T-To C=— . 19
- 12) pea+270) 49
where Transferring Eqs(17) and (18) to the Laplace transform domain
yields
== (13)
“c © A p
) . ) ‘1 . W Ui’jj+(W)Uj’ij_-r’i_szui:0 (20)
is a unit length, and the longitudinal or thermoelastic shock wave H H
speed is given by T —sT—Csy,=0 21)
(A +2u) , , ,
Ci=\— (14) wheresis the Laplace transform variable due to transformation
p with respect to the time variable. Note that the transformed func-
A wavefront appears if tions could be written as; andT* (for example so as to distin-
| guish them from their counterparts in the physical domain. We
>1. (15) elected to retain the same notation for these functions as used for
Citw the physical domain since we will shortly bring them back to this

domain through numerical inversion. Equatid@6) and(21) can

Note that the layer thicknesk, can be written in terms of a di- X . .
be written in matrix form as

mensionless thicknesk, through

I=Lg. (16) 0;U;=0 (22)
The dimensionless stress tensor is denoted by 7; (X,Y,t). where
The dimensionless forms of Eqdl) and (2) are
" (Hu B . U=[Uu Vv T (23)
Nt 2 YT N i T LTS 17 Eor a two-dimensional domain, the opera€y; reduces to
|
M Ntu o, N+
+ - -D
N2u A N+2u D1 N+ 25/ P1P2 !
.= A+ A+ 24
! G - - D5—-s?> —D, (24)
N+2u N+2u AN+2u
—-sCD, —-sCD; A-s
[
whereD;=d/dx; for (i=1,2) andA denotes the Laplacian. w
In order to derive the boundary integral problem, we start with.;;= N VijktSCV5j [ Sept W(Vﬁwﬁ Ve g
the following weak formulation of the differential equation set, K K
Egs.(22), for the fundamental solution tenswf, ; (27

fﬂ(e)iiui)vi*kdﬂzo- (25) wheren is a component of the unit outward normal vectorto
the boundary. The first through fourth terms in E2f), represent,

fter | ina b he d . d taki limiti respectively, contributions from the product of the traction vector
After integrating by parts over the domain and taking a limiting 4 the fundamental solution tensor, the product of the displace-

procedure with which an internal source approaches a boundgi¥n yector and the derivative of the fundamental solution tensor,
point, we obtain the following boundary integral equation: the product of the derivative of temperature and the fundamental
solution tensor, and the product of the temperature and the deriva-
tive of the fundamental solution tensor. The fundamental solution

_ * _ *
CiUklys)= fF[TG(X'S)VEJ(X'y'S) U(x,8)2(x,y,5)]dT'(x) tensor must satisfy the following differential equation:

+f[T,n(x,s)V§j(x,y,s)
r 0 V=~ Sikd(X—y) (28)

_T(X,S) ;j,n(xvy!s)]dr(x) (26)

whereU =u(e=1,2), U3=T andCy; denotes the shape coeffi-wheres(x—y) is the delta function and;; is the adjoint operator
cient tensor. The kerndl; in Eq. (26) is defined by of ©;; in Eqg. (22). This is given by
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A+ A+
( - )A+( ’;)fosz (—l;)DlDz —-sCD,

AN 2u A+2 AN+2
0” = AN )73 ANtpu P 2 . (29)
_ - -sCD
()\+2,u D1D, N+2u At N+2u D3-—s S-b2
- Dl - D2 A_S
I
3 Fundamental Solution W, N
i )= | (= mg) (h—my) | ——
In order to construct the fundamental solution, we express th 2m %
fundamental solution tensdv’,i’] , from Eq.(28), in the following I
potential representation by using the transposed co-factor operator X1 h2—my| 1+ AT C)}hE}KO(hkr)
wij of 6;; and scalar functio* ([29]): N
* _ Wi (N + ) N+2u hy
Vi (X,Y,8) = pij@* (X,Y,S). (30) +W hZ2—m,| 1+ T s C ||~ Ka(hur)
After substitution of Eq(30) into Eq. (28), we get the following (39)
differential equation:
WA+ )|, N+2u
A(D*=—5(X—y) (31) Kk(r):W hk—ml 1+ Nt C Kz(hkr)
(40)
where W N2
. k M
“ &)= Z[hé( ) s? K (hyr) (41)
A=det )= -7 (A-hD(A-h)(A-h)  (32)
K W A+2
k|2 Ml 2
5 . &)= Z_{hk_( ) s°|hsCKy(hyr) (42)
and theh{ are the solutions of ™

Wk )\+2/L
oo (M2 o §k<r>=5{hi( P’ )sz (hi=s")Ko(hr)  (43)
)73
and
h3+h3=s?+s(1+C) N2p)
r=lx=yl; m=s; my= PR
hah2=s°, (33)
-1
Note thath; is the longitudinal wave velocityh, is the shear Wi:(h_ “h?)(h2—h?)
wave velocity,h; is the rotational wave velocity, and Pk T
(i=1,2,3 j=2,3,1 k=3,2,1). (44)
+
R [ , Koz(hlrz) . , Koz(hzrz) . In order to solve Eq(26), the standard boundary element proce-
2w || (hz=hp)(hz—h1)  (h3—h3)(hi—h3) dure may be applied(31]). When transformed numerical solu-

tions are specified, transient solutions may be obtained using an
(34) appropriate numerical inversion technique. In this paper, the
method presented by Durbj82] is adopted for numerical inver-

sion in the time domain.
HereK,, K, andK, are modified Bessel functions of the second

kind of zero, first, and second-order, respectiiB0]). The com- 4 Results and Discussion
ponents of the fundamental solution tensvf}, for the two-
dimensional domain in Fig. 1, are as follows:

n Ko(hgr)
(hi—h3)(h3—h3) |’

We examine the influence of thermoelastic coupling due to the
applied surface temperature in E§). We consider two values of
pulse durationt,,, for pulsed laser heating of a pure aluminum
layer where E=6x10*Pa, »=0.33, p=2650kg/n?, and «
=9.4x 10" ° m?/sec (extrapolated close to the melting tempera-
ture from[33]). Hence, the velocity of the longitudinal wave in

3 aluminum isC;=5792 m/sec. We must ensure that the layer cri-
V;fzz E(D)r . (36) terion given_ by Eq(11) is maintained.fl(;r the shorter of the two
k=1 pulse durations, we choosg=8.5X10 ““sec ort,,=3. We set
| =108: this givesl|=0.16x10 ®m, L=10 and

3
Vim 3 (8w R a0 (=12 (@)

3
2
V=2, &0 . (37) o
3 kzl . 33. (45)

3 The time for the longitudinal wave to travel across the layer thick-

V§3=2 Z(r) (38) ness is 27.8 10" ¥sec. Hence, the pulse duration is less than
k=1 three times the time required for the thermoelastic wave to propa-
gate from the free surface to the bonded surface of the layer.

where Equation(15) implies that a longitudinal wave will be generated
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within the layer. For the longer of the two pulse durations, we 0.35 il o

choose t,,=85x 10 °sec (which is four-orders-of-magnitude veee x=0.3L, C=0.3
longer than the shorter pulse duraticr t,,=30,000. We set 0.3 x=0.6L, C=0
=2008: this gives| =3.24x10"%m, L=200 and ——x=06L,C=03
12 0.25-
—=1.34. 46
at,, (46) 0.24
T

The time for the longitudinal wave to travel across the layer thick-
ness in this case is 53610 ° sec. Hence, the pulse duration is 150
times longer than the time it takes for the longitudinal wave to
travel from the free surface to the bonded surface. Equatibn
implies that no longitudinal wave will be generated within the
layer. The picosecond pulse duration is common to mode-locked
Nd:YAG lasers([24]), whereas the nanosecond duration is com-
mon to Q-switched Nd:YAG lasei$25]). Note that both of these 0
pulse durations are considerably shorter than that addressed by

Kim et al.[16]. In that paper, the pulse duration was of the order

of 10" *sec. All quantities reported in the following figures are in Fig. 3 Tversus t, at y=0.2 L, for t,=3
terms of dimensionless variables defined by E4®): We have

0.154

0.14

0.05

0.8

two pulse trains is shown in Fig. 2. This consists of four pulses fire atx=0.6 L is much lower than that at=0.3 L. The curves
where when the corresponding laser pulse that produced it is completely
coupled solution predicts more extreme temperature fluctuations
activated at=6). The average poweR,, is
) 2Py
sin dt=—==0.64. (48) solution atx=0.6 L, y=0.2 L shows three temperature crests,
and displacement fields due to the coupled and uncoupled sglist beforet=12. As seen in Fig. 2, this corresponds to the time
=0.3) formulations for 8t=<12. The uppermost curvesolid the layer so that the temperature has not significantly increased
were selected in such a way that the thermoelastic shock fronttait role in the temperature profile since the thermoelastic shock
coupled solution. Eventually, the surface will melt and/or ablate,
final note on Fig. 3, the shape of the curves for the coupled solu-
T 06 problem with the generalized dynamical theory of thermoelastic-
0.4
and the lateral displacemen, (i.e., parallel to the surface

dropped the hat notation for convenience.
The temperature versus time profile due to the shorter of the 6. It is immediately apparent that the mean value of tempera-
x=y=0. The dimensionless peak power per pulse delivered to tberresponding tx=0.3 L, y=0.2 L show four crests in the tem-
surface,P,, has been arbitrarily set to one. Peak power in theerature distribution. A comparison of Figs. 2 and 3 shows that
pulse train is delivered to the surface of the layer at tinf,és each crest due to the uncoupled solution appears near to the time
deactivatedi.e., t=3, 6, 9, 12. However, each crest due to the
tN:3(2N_1) 47) coupled solution occurs during the time when the corresponding
P 2 laser pulse that produced it is in the process of deactivation. The
andN is the pulse numbelfor exampleN=3 for the pulse that s in the layer since the crest to trough deviations in the temperature
profile between successive pulses exceed those predicted by the
b Py flw 2t uncoupled formulation. The curve corresponding to the coupled
T, T
w o whereas that corresponding to the uncoupled solution shows a
Note that we selected four pulses since this was deemed tods#tinuous increase in temperature. It is interesting to note that for
adequate for purposes of discerning differences between the st€ss0.3, the maximum temperature due to the third pulse occurs
tions. when the fourth pulse is deactivated. Clearly, the coupled solution
Figure 3 compares the temperature evolution, at specific depthgnore sensitive to the temporal pulse profile than the uncoupled
within the layer, due to the uncouple€0) and coupled € solution. Also, the poink=0.6L, y=0.2L is deep enough within
and dottedl show the temperature evolutionsat0.3L, y=0.2L. there by the time the fourth pulse is delivered to the surface. As
The lower two curvegdashed and dot-dasheshow the tempera- additional pulses beyond the four shown in Fig. 2 are delivered to
ture evolution ak=0.6L, y=0.2L. The dimensionless quantitiesthe layer surface, the insulated boundary will play a more impor-
x=0.3 L occurs at timag=23, and that ak=0.6 L occurs at time front will be reflected from this boundary. The temperatures will
begin to increase, with the coupled solution continuing to show
greater crest-to-trough deviations than those predicted by the un-
resulting in different modes of thermal transport within the layer.
At this point, however, the present model would have to be modi-

1 fied to account for the propagation of a phase change front. As a
tion may in fact be subject to further scrutiny since thermal trans-
port at such short pulse widths is a wave phenomena. Careful
examination of this issue would require solution of the present
ity wherein both the thermal and mechanical disturbances are
characterized by finite wave speg@a2]).

Figures 4 and 5 show the evolution of the axial displacement,
0.2 =0), respectively, for &t<12. In Fig. 4, the curves are grouped
according to the curves in Fig. 3 and compare differences between
the coupled and uncoupled solutions. ¥ 0.3L, y=0.2L (solid

0o 2 4 6 s 10 12 and dotted curvesthe material response to the first pulse is an
¢ inward “bulging” (up tot=23.5) since a positive displacement,
follows the positivex-axis into the layer. This suggests that the
Fig. 2 Thermal load due to laser pulse train at  x=y=0 axial stress is compressive. The displacementhanges sign at
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the crests that result from the pulses in Fig. 2. The temporal varia-
tion of the pulse train profile is thus smeared ¢iar the most
par} in the lateral displacement. At=0.6L,y=0.2L, however,

the response to the first two pulses is slightly better developed for
the coupled solution, although any hint of the pulse shape in the
corresponding uncoupled solution is smeared out. At both points,
the coupled solution predicts smaller displacements than those
predicted by the uncoupled solution. This effect is most pro-
nounced at longer times in the process.

Figures 6—8 show the evolution of the axial stresg,, lateral
stress,oy,, and shear stressr,,, respectively, over the time
frame considered in Figs. 4-5. Each figure compares the coupled
and uncoupled stresses @+0.3L, y=0.2L and x=0.6L, y

=0.2L.
T Al In Fig. 6, the minima in the two curves for whig=0 fall at
0 1 2 3 4 5 6 7 8 9 101112 the times when the longitudinal wave passes the poirt§.3L
¢ and 0.6L (longitudinal wave propagation has no meaning for the
uncoupled formulation The same is not true for the two curves
Fig. 4 wu versus t, at y=0.2L, for t,=3 corresponding t&€C=0.3. The most extreme compressive stresses

occur just before the longitudinal wave pasges).3L and 0.6_.

At x=0.3L,y=0.2L, the material is in a state of tension for 3
t=4.6, at which point the surface bulges outward. This suggests<6 since the wave at=3 has passed. The tensile stress peaks
that the axial stress becomes tensile. As the material respondaitto=4.8, and then decreases as the second wave approaches. This
the second pulse between &.8<8.3, the surface again bulgesbehavior is consistent with the behavior of the axial displacement
inward (but only by a very small amountind then continuously shown in Fig. 4. Similar observations can be made about the
bulges outward beyoni=7.2. A similar behavior is noted for the curves corresponding to=0.3L,y=0.2L. At both points within
two curves corresponding %=0.6 L, y=0.2 L, except that the the layer, the coupled solution predicts an axial stress variation
amplitude of the inward bulge at the first crest exceeds that at
=0.3L, y=0.2 L. The coupled solution noticeably differs from

the uncoupled solution at=0.6 L, y=0.2 L in that it tends to 15

predict a less extreme variation in the axial displacement. Clearly, — x=0.3L, C=0
the coupled solution shows little difference between the un- ---- x=0.3L, C=0.3
coupled solution ak=0.3 L, y=0.2 L, and hence longitudinal —— x=0.6L, €=0

. ; ; — — x=0.6L, C=0.3
wave propagation has little effect there. However, the same is not N

true for the deeper lying point at=0.6 L, y=0.2 L which is
closer to the bonded interface. The reversal of sign in the curves
of Fig. 4 results from layer deformation in response to the very
short pulse duration. This behavior was not predicted Kim et al. xx
[16] since the axial displacement was found to be compressive for

all time. This prediction is consistent with experiments by Appol-

lonov et al.[34], in which a continuous wave GQaser beam was o
used to demonstrate outward bulging of a sapphire surface. Figure
5 shows that the lateral displacement is always outward from the
pointx=y=0. Note, however, that the displacemenkat0.3 L,
y=0.2L is always greater than thatat0.6L, y=0.2L: This is 08 NS
independent of the coupling constaft, This reveals a behavior

that differs from that shown in Fig. 4 due, for the most part, to the t

absence of a rigid boundary constraint along yhadirection. The
curves corresponding to=0.3L,y=0.2L show only the tops of

Fig. 6 oy, versus t, at y=0.2L, for t,=3

0.25 0.2
— x=0.3L, C=0
<.+ x=0.3L, C=0.3
—s— x=0.6L, C=0
0.29_ _ x=0.6L, C=0.3

v Gy
0.1
0.0 |
5
O i g - T T T T T T T T 14 T T T T T T T T T T T
01 2 3 4 5 6 7 8 9 1011 12 01 2 3 4 5 6 7 8 9 1011 12
t t
Fig. 5 vversus t, at y=0.2L, for t,=3 Fig. 7 oy, versus t, at y=0.2L, for t,=3
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Fig. 9 T versus t', at y=0.2, for t,=30,000

that is less extreme than that predicted by the uncoupled solutidnse to the time when the corresponding pulses achieve peak
once the shock front has passed. Of the cases considered in Figaddyer. Atx=0.6L, the temperature achieves its extreme values

the most extreme tensile stress was found to occu=ad.6L.

midway between the time when the corresponding pulse achieves

Note that the wavefronts are not perpendicular to the time ajisak power and when it is deactivated. It is interesting to note that

since heat is not instantaneously released into the matéhnial

while the temperature maxima differ at the two depths, the tem-

would require a delta function in the surface temperature bounglerature minima are roughly equivalent. This was clearly not the

ary condition(Eq. (5)).

Figure 7 shows that the lateral stress,,, is compressive
(other than a small excursion into the tensile regiot=a6) from
the onset of laser irradiation. The origin of the compressive lateral
stress is the sudden expansion of heated material against cooler,
albeit deformable substrate material that surrounds the heated re-
gion. Note that the coupled solution predicts that the lateral stress
is less compressive than that predicted by the uncoupled solution.
Of the cases considered in Fig. 7, the most extreme compressive
stress was found to occur at=0.3L. Note that the axial stress
and displacement profilé&igs. 4 and $tend to vary according to
the pulse train profile. However, this is not the case with Figs. 5
and 7 for the lateral stress and displacement profiles: While the
former denotes very little of the pulse train profile, the latter tends
to display the characteristic rise and decay of the pulses delivered
to the surface.

Figure 8 shows that the shear stresg,, crests ax=0.3L,
y=0.2L, andx=0.6L, y=0.2L, respectively, a short time after
the first and second pulses have been deactivated. The sign of the
shear stress thus changes some time after the passage of the ther-
moelastic shock front. Note that the shear stress distribution is
necessarily complicated since it is influenced by the variations of
o anday, as well as the bonded interfacexat L. For example,
the shear stress at=0.6L is nearly constant between the crests
due to the second and third pulses, i.est810. The coupled
solution predicts smaller values of the shear stress than those pre-
dicted by the uncoupled solution. This difference becomes more
apparent with increasing time.

Figures 9—13 explore the response of the layer material to the
t,,=30,000 pulse duration at=0.3L, y=0.2L, andx=0.6L,
y=0.2L. For this purpose, we define a new dimensionless time
variable,t’, where

t’=1000Q.

Each figure is considered over the<®’ <12 time interval.

Figure 9 compares the temperature evolution, at depths
=0.3L andx=0.6L, due to the uncoupledd=0) and coupled
(C=0.3) formulations. Note that the differences between the
coupled and uncoupled solutions are substantially smaller com-
pared with those due to the ultrafast pulse train displayed in Fig.
3. At both depths, the coupled solution predicts a slightly less
extreme temperature profile. A=0.3L, the temperature peaks

(49)
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complicated. The uncoupled solution predicts that the crests in the
lateral displacement “split,” while this behavior tends to be
smeared out by the coupled solution. The greatest differences be-
tween the two solutions occur Ht=7.5,10.5. The splitting of the
third and fourth crests of the lateral displacement profile illustrates
a fundamental difference between the material response to the
nanosecond and picosecond pulse trains. For the nanosecond
pulse train, the material tends to develop a vibration or elastic
“spring” along the y-direction due to substantial expansion
against the colder regions that surround the region exposed by the
beam. Some indication of this is also seen in Fig. 10. For the
picosecond pulse train, however, this behavior is not observed
(see Fig. % since the effect of thermoelastic coupling is much
more important and the average value of the displacement at both
depths is considerably smaller than that for the longer pulse dura-
tion. The time scale for heat absorption and diffusion is consider-
ably shorter for the picosecond pulse train and hence the material
does not displace along tlyedirection to the extremes that occur
during exposure to the nanosecond pulse train.

Figures 12 and 13 show the evolution of the axial stress,
and lateral stressy,,, respectively, over the same time frame

case in Fig. 3. Based upon the results in Fig. 9, it is clear th@@nsidered in Figs. 10 and 11. Each figure compares the coupled

thermoelastic coupling is much more important for the=3

pulse duration.

and uncoupled stresses ®+0.3L, y=0.2L and x=0.6L, y
=0.2L. Note that Figs. 10 and 12 show oscillatory behavior in

Figures 10 and 11 show, respectively, the evolution of the axi§]e displacement and stress components along the layer axis. A

and lateral displacement fields. In Fig. 10, the four trough regiosénilar observation can be made relative to Figs. 11 and 13. Maxi-
occur in response to heat absorbed from the four pulses delivefédM tensile stresses along the layer axis occtrag.3, 5.3, 8.3,

to the free surface of the layer. Unlike the inward and outwad 11.3 in Fig. 12. Maximum compressive stresses parallel to the
bulging behavior due to thg,= 3 pulse duratiorisee Fig. 4, the free surface of _the layer also occur at these times accordlng to Fig.
layer surface only bulges outward in response totre30,000 13. The key difference between Fig. 6 and Fig. 11 is that the
pulse duration. The coupled solution predicts that the maximughangeover in stress from compressive to tensile along the axial
outward displacement of the layer surface is less than that pecection due to the, =3 pulse duration is not predicted for the
dicted by the uncoupled formulation: The extreme values occurtat= 30,000 pulse duration. The stress due tot{jre 30,000 pulse
t'=2.7, 5.6, 8.5, and 11. However, as the displacement decreadiation is always tensile along the layer axis. Note that the
(in response to deactivation of the corresponding putbereby coupled solution predlcys a_smaller t_ensne stress than is predicted
implying a reduction in the outward bulging, the coupled solutioRY the uncoupled solution in both Figs. 6 and 11. For the lateral
tends to cross-over the uncoupled solution. When the amplitudeSf€SSoyy, the uncoupled formulation shows more extreme com-
the bulge drops to its smallest valiee., at the least negative Pressive values than are predicted by the coupled formulation.
values of displacement the uncoupled solution predicts the [N the present model, we have assumed that the material does
smallest bulge amplitude. Hence, the extreme shapes of fM mMelt or evaporate during the laser heating process. This of
bulged material are predicted to be smaller by the coupled formgRuUrse has limited our discussion to heating without phase change
lation. Figure 11 shows that the coupled and uncoupled solutiof@d the thermal stress field that results in the material. Since

for the lateral displacement differ insignificantly in response to tHHISed lasers are commonly use to scribe and evaporatively cut
first two pulses. Extreme values during this time occurt’at Materials in many industrial process¢85,36), some comment
—25. Like that predicted for thg,=3 pulse duration in Fig. 5 on the extent to which the temporal pulse widths considered in the

y=0. As the material responds to the third and fourth pulses, tAES worthwhile. For this purpose, we choose to examine pure alu-

oscillatory behavior of the lateral displacement becomes mdfdnum metal, and will therefore neglect the fact that all aluminum
surfaces consist of an amorphous natural oxide layer which is 3—-6

nm deep(37]). An estimate of ablation deptl, (which is useful
for the purpose of preliminary process desifpllowing delivery

0 of a single pulse of temporal width,,, is given by the following
lumped heat capacity expressiga8s]):
-2 \
\
\L L tyf
W2\ d=———— 50
\ .
- - pleo(T,—T) L] (0)
\RAY
\ \ .
Sy = VoI TEP ; ;
6 A /a\ | We assume that all quantities in EGO) are dimensional. Note
Y, N thatf is the absorbed power density, is the heat capacityl, is
~7 the vaporization temperatur@; is the initial temperature of the
84— x=0.3L c=0 material, andL, is its vaporization temperature. In writir}g Eq.
.e.e x=0.3L, C=0.3 (50, we have assumed that all material properties are
—— x=0.6L, C=0 temperature-independent, the laser pulses do not couple to ejected
o= 5 xs0eLC=08 I material or beam plasm@nd hence nonlinear optical processes
0 1 2 3 45 6 7 8 9 101112 are neglected[38])), and ablated material is removed instanta-

¢

Fig. 13 o, versus t', at y=0.2 L, for t,=30,000

Journal of Applied Mechanics

neously with no melting and subsequent fluid flow due to ther-
mocapillary effects[39]). The absorbed power densitly,is re-
lated to the peak power per puldg,, via
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Py physics are being incorporated into an extension of the present

A (51) model which includes the thermal inertia term for ultrafast laser
heating and related nonlinear optical effects. This will establish a

whereine is the absorption coefficierfor fraction of the incident link between electronic conduction due to heat absorption over
radiation that is absorbed by the surfade, is the peak power very short time intervals and the resulting material deformation.
density per pulse, anélis the beam exposure area on the surface.
Note thatf contains information about the optical properties of the
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s | RAPId Indentation of Transversely

e | lsotropic or Orthotropic
Half-Spaces

H. G. Georgiadis

Mem. ASME

Mechanics Division, The canonical problems of rapid indentation by, respectively, a rigid smooth wedge and
National Technical University of Athens, a rigid smooth cylinder, are examined for a transversely isotropic or orthotropic half-
Zographou 15773, Greece space in plane strain. An exact transient analysis based on integral transforms is carried
out for the case of contact zone expansion at a constant subcritical rate. Certain functions
in the transform space can be factored in such a manner that the resulting solutions,
M. T. Hanson despite anisotropy, have rather simple forms. This factorization is also exploited to obtain
Department of Mechanical Engineering, a compact exact formula for the Rayleigh wave speed, which serves as the critical contact
University of Kentucky, zone expansion rate. Aspects of contact zone behavior for the two problems are illustrated
Lexington, KY 40506 for five specific materials.[DOI: 10.1115/1.1365154
Introduction 92U, 52U, Pu,
Indentation of elastic solids is a key problem in contact me- CMWJFC““ﬁ_yzHCBJr C44)m—pux (1a)
chanics([1]). For the static case, much is known about the formu-
lation of relevant boundary value problerfi2]) and classes of Uy 7°uy Fuy o
exact solutiong[3,4]). An extensive literature for anisotropic sol- Car gz C33(9_y2 +(C13tCag) Xy pUy (1b)
ids also exists, e.d[5-7]). Results for transient dynamic inden- ) )
tation are not as common, and studies of isotropic solids, eWith the associated stress-strain formulas
([8-10]), predominate. A recent survey of anisotropic w{rkl)) ou au
is available, although general formulas for the contact process are —C,—x Y
: Pxx=Crr~ T Cig (24)
a primary focus. X ay
In this light, the present article considers an exact transient
analysis of indentation of a transversely isotropic or orthotropic Fo=0 &Jrc ﬂ (2b)
linearly elastic half-space. The canonical situations of indentation W xSy
by, respectively, a rigid smooth wedge and a rigid smooth cylin-
der are treated. The shapes imply deformations in plane strain, o duy  duy
and, as a first step, the material symmetry axes are normal and Txy= UYX_C““(a_xJr a_y> (20)

tangential to the half-space surface and expansion of the contact ) ) )
zone is at a constant subcritical rate. These equations hold for both orthotropic and transversely isotro-
The analysis begins in the next section with the basic equatioi§ Mmaterials, where theandy-axes are axes of material symme-
for the material, and identification of the related problem of arbfy- The (uy,u,) are the k,y)-components of displacement, and
trary tractions applied to the half-space surface. The exact integé functions of X,y) and time, wherd-) denotes time differen-
transform solution to the problem is obtained, and serves as fiflion. The constantscqs,Ci3,Cs3,C40) @re a subset of the elas-
basis for construction of the indentation problem solutions.  ficitiesCi(i,k=1,2, ... 6)that appear in the generalized Hooke’s
Key steps in the analysis are factorizations of certain functiof@ ([13]), andp is the mass density. Equatio(t are a special
of the transform variable that give, despite the material anis§@se of a more general form that involves four constants that can
ropy, rather simple expressions for the transform of the norm@g linearly related to various subsets@f. In addition to the
displacement of the half-space surface. Indeed, one of the factBpésotropies considered here, that form describes the plane-strain
is extracted from a function of the Rayleigh type, and allows #sponse of materials with various types of crystal strucfur).
compact exact formula for the Rayleigh wave speed along tk¥erviews of the general relation between crystal structure and
surface. To illustrate solution behavior, contact zone variatidR€ Cik can be found ir([15,16]).

with indentation motion parameters is examined in the two cases! he subset considered (@) and(2) are constrained to guaran-
for five specific materialg[12]). tee either a positive-definite strain energy function or strong elip-

ticity. The former is generally more restrictive than the latter,
Basic Problem Which itselflguarantees real nonzero wave speeds, and guarantees
solution uniqueness. Its restrictions are
Consider a half-space, defined in terms of Cartesian coordinates
(x,Y,2) as the regiory>0, initially at rest. The half-space mate- C11>|c1g, (Cipt+Cip)Caz> 20f3, C44>0. 3)
rial is of a class of linear homogeneous anisotropic solids who
nontrivial governing equations in plane strain in the absence

body forces have the form C11=Ca3=N+2u, C1p=Ciz=\, Cay=p (4)

i%e isotropic limit case can be extracted by setting

Contributed by the Applied Mechanics Division ofiE AMERICAN SocieTy oF ~ Where(\,u) are the Lame’ constant$13]).
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(6) inery. Integration in12a,b) is over the Bromwich contours in the
p andg-planes, respectively.
are introduced, so that the independent variabieg,§) all have  Application of (11a,b) to (7a,b) in light of (10) gives the gen-

Caa In (11a,b) p can be treated as real and positive, whijles imag-
U=\ [ 244
p

the dimensions of length, ar{d) and(2) become eral transform expressions
Pu,  9°uy Juy,  dPu, _ _ 1 _
+—t = U,=C,e P¥+ —— (ab?—B2)C,e P 133
B ayZ T Moxay T 98 (7a) o mqb( )C2 (133)
Pu,  d*u, Pu,  duy ~ > 2 _ —ob
— g im—=X=" U,=———(aa”— A°)C e P¥+C,e™ PY 13p
ax? oy TMoxay T o (70) Y mgaa ! 2 (130)

for y>0, where C,,C,) are undetermined functions op(q)

1 Ju Ju

C_Ama-xlegﬁ_):—i_(m_l)ﬁ_yy (7()) and

1 P A=Va\1-Bq’, B=y1-¢’ (148)
Uy Uy

—oy,y=(m—1 +a— 7d

caa TG ey () aa=s VS 4?82, \2ab= st V& 4A%B2

(14b)
1 1 duy  duy
C_MO-X),:C_MO-YXZW + W (7e) S=A2+B2+ m2q2: 1+ a— yqz' aab=AB. (14c)

It can be showrf[12]) that(8) guarantees that the branch points
=*(1,14/B) of (B,A) lie on the Ref)-axis, and also constitute
ranch points for If,a). Boundedness of13) for y>0 requires
that RefA\B,a,h)=0 in the cutg-plane. Application of(11a,b) to

Equation (6) defines a speed that, in the isotropic limit, is the
classical([17]) rotational wave speed. For purposes of illustratio
we consider in view of(3) the following constraintg[12]) on

(e, 7): (9) in view of (10) and (13) allows the coefficients to be deter-
2JaB<sy<l+aB (1<B<a) (8a) mined as
C4sPR
atpsysiraf (1<a<p) ®0)  ZP o | (m—1)B2+ ab?]qF— (B2— ab®+ m)b
) B maea
2a<sy<l+a® (1<B=a). (8c) (15a)

The class of anisotropic materials governed®yincludes beryl, CapR
I(?ot?alt, ice, magnesium, and titanium, as well as the iSOtrOpiC;:—wCz:—[(m—1)aa2+A2]qTr+(Bz—ab2+mq2)aa~r
imit.

For s>0 the half-space surface is subjected to the traction (150)
boundary conditions R=[(m—1)@a?+A2][(m—1)B2+ ab?]g?
Tyy=o(X8), = T(XS) ©) +(B?— ab?+ma?)?AB. (150)

for y=0. Here(o,7) are largely arbitrary, but must be continuousy, tne sequel, the normal displacement algrgQ is required, and
and bounded almost everywhere, i.e., integrably singular behavgq;(w) and(i5) are combined to yield '

is allowed at isolated points. The initial conditions for-0 are

_ aaN; 7T qM T

duy du ] —_— 16a
(ux,uy,T;,Tg)so (s=0) (10) "R cup R Ccup (162)
and it is expected thatu(,u,) are bounded and continuous for T :bNZ i M 7 (16b)

y>0 whens>0 is finite. The related Boussinesq problem is YR Caup R Cyp
treated in([12]). However, the role of the basic problem here g, y=0, whereR is given by(15c) and

the dynamic indentation study, and manipulations that are conve-

nient for that purpose, suggest that the solution process be brieflyM = (A?— aa?)[(m—1)B?+ ab?]+ (B?— ab?+ mg?) mAB

outlined. (17a)
N;=(B2— ab?)?+m?q?B?, (170)
ab®N,=—A?N; (17c)

Transform Solution

Consider the unilateral[18]) and bilateral ((19]) Laplace
transforms

In the isotropic limit,cyy=p, a=B=1+m, y=2(1+m) and
(16a,b) reduce to forms
b, 7 Ny, o _ a, ¢ Ny 7

(18)

£ J, Foemes @m)  STTRoup Ryup VT Roup Renp
0
that are consistent with those found([i20]). In (18)

ﬁ:f Fe Paxdx (11b) 1 , ;
- =\ 13, 9" bo=+1-q (199)

and their corresponding inverse operations
No= 2(q2+ agby)—1, Ry= 4q2a0b0+ (2C|2_ 1)2 (1%)

1 .
F(s)= —J FePsdp, (12a) whereR, is a form([17]) of the Rayleigh function.
2 To aid in the transform inversion process, some simplifications
of (16) are made: First(14b) gives the quantities

. P (=
F= ﬁj FeP¥dq (120) d, = Ja(b+a)= ST 2AB (20)
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and it follows thata®=b? whend. =0, i.e.,

, Y(l+a)—2a(1+p)xi2miay—a-p
= v’—4ap '

In view of (8) the denominator and, in the numerator, the real
term and second radical in the imaginary term, are positive and
vanish in the isotropic limit. However, the imaginary term itself
vanishes a®(/e), e—0 while the others behave &4¢). There-
fore, the apparent branch points defined(21) would move to
infinity in the g-plane. Additional cuts for these branch points
must be introduced so that the restriction &e)=0 is still satis-
fied. To this end, we allowl . , i.e.,b+a, to be continuous across y
these cuts, althougha(b) themselves are multivalued. Thus, the
additional cuts define branches @f , i.e.,b-a. A similar situa- Fig. 1 Schematic of indentation by a rigid wedge
tion arises for wave diffraction by a crack in a transversely iso-
tropic media([21]).

It can be shown that the branch pointscbf are also roots of hojds in view of(24). If contact is smooth, no shear stress exists
the functions in(15c) and (17). In the Appendixd_ is extracted ajongy=0. Therefore, in light of(9) and Fig. 1, the transform
as a factor from these functions so that it cancels out in the ratigsjytion obtained above will also satisfy the indentation problem

displayed in(16). From(A4) and(A5) in the Appendix and use of ypon settingr=0 and finding ¢ such that the contact zone
(140), the I’esu|t Condition

d, 7 q
T= — JaB ot ae
) 2D Cyqp D cup

(1)

_ u,=Cs—ylx (]x|<cs) (26)
is satisfied fory=0. Here the usual 3]) assumption is made that
d, & q 7 the wedge angle is large enough to justify the approximation
U,=—A ——+N Do (22b) tany~¢. In addition to(26), the choice ofo must satisfy the two
2\/aD Cap Cadp Signorini conditions[2]) of smooth contact{l) the contact zone
for y=0 can be obtained, where cannot be in tension anywheiieg.,, o<0, |x|<cs, and(ll) inter-
) 5 5 pretation of the wedge and half-space surfaces should not occur
D=A+[A"+(m—1)7q°]B, N=A+(1-m)B.  (23) outside (x|>cs) the contact zone. Moreover, the solution should
It is noted that, for the restriction®), the coefficients of§,7)  include determination of the zone expansion rate paranceter
exhibit only the branch cuts Im(=0, |Re@)|>1 and Im¢)=0, The indentation problem geometry has no characteristic length,
|Re@)|>1/JB. In particular,D is analytic in theg-plane cut along and its only nonhomogeneous conditid@f), prescribes a dis-
Im(q)=0, |Re(@)|>1/yB and exhibits the nonisolated real rootg’lacement that is homogeneous of degree kis)( The full-field
g=*1/cg(0<cgr<1). Indeed, settind>=0 and rationalization displacement foy>0 should, therefore, be homogeneous of de-
gives a cubic equation ig? that is identical in form to that ob- 9'€€ 1in &,y,s), and the corresponding analysis for the isotropic
tained in([12]) as Eq.(4.3.22 for the roots of the transversely half-space([20]) suggests the trial function
isotropic Rayleigh function. That i$gv, is the Rayleigh wave oo s
speed([22]) parallel to thex-axis for the class of materials con- o=—cosh '— (|]x|<cs). 27)
sidered here, an® is itself the essential factor of the Rayleigh m clx|
function. As an alternative to the aforementioned cubic equatioHere o, is an unknown constant that can be shown to be, in fact,
cg can be, by following a general approa@1,23), obtained to the average normal traction over the contact zone. T2i&tvan-

(222)

within a simple quadrature as ishes continuously at the contact zone edpgs-cs essentially
> guaranteeg[20]) that the second Signorini condition will be sat-
e [af—(m—1) G (243) isfied for (25).
R™ (1+Ja)Vap ° Operating on(27) with (11) gives
1(t dt Ji-t2 ~__ %%
InG,=— —tan '———=[a+((m-1)?— ap)t? T 2 M- g?c? (28)
[¢] Wfl/\ﬁ t \/;\/m[ (( ) B) :| p 1_q C

(24b)  Substitution of(28) into (22b) and setting7=0 gives the trans-
where (8) guarantees that the coefficient &, is real-valued. form of the normal displacement aloryg=0. The analyticity of

With (22) available, the two dynamic indentation problems can b€ result indicates that the entire bjxaxis can serve as the
addressed. Bromwich contour in the inversion operatidii2b). However,

Cauchy theory can be used to switch the contour onto paths sur-

. .. rounding the branch cuts ofA(B,d,) on the Reg)-axis. Thus,

Indentation by a Rigid Wedge the exponential term can be made to be negative and real and, in
Consider the same half-space governed®y(8), and(10). In a manner similar to the Cagniard-deHoop proced{izd]), the

this case, however, a rigid wedge of half-ané’ve—w is pressed inversion operatioril2a) can be performed by inspection. Setting

directly into the surface=0 for s>0, as depicted schematically Re@)=t, Im(q)=0+ then yields the formal integration

in Fig. 1. The indentation speed is constant, as is the rate at which o

the contact zone spreads symmetrically from the wedge apex. In U= — Co, Im s—t[x| &dt (29)

view of (6), (C,c) are the two speeds, nondimensionalized with Y 2mcyy o J1-t%c2 D

respect tov,. The former dimensionless constafimdentation ) )

speedlis given, while the lattefcontact zone expansion raie a along the upper side of the Rg{axis.

priori unknown. A subcritical rate is assumed, however, so that N view of (14a), (20), and(23), the integrand of29) is purely
the restriction real fort>1/c, so that wherjx|<cs, 1/c becomes the effective

upper limit of integration and29) is, appropriately, linear in
0<c<cg (25)  (|x|,s). The factors of thes and|x-terms in the integrand behave
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Cauchy theory can be used to transform the integration to the
positive Im@)-axis and a quarter-circle of infinite radius in the
first quadrant of theg-plane. The result is that foy=0,
|x|<cs,

as O(t™?) and O(t™ %), respectively, as|t|—». Therefore, l
ao

_coy [X| y+2\ap
uy= C44{ SI+4CX\/Z 1+ 'y—2\/a_,8) (30)
where
ap—(m—1)? Vap-1  Vap+1
X= +
V7 —dap=y+2aB |\ \y-2Vap Vy+2Vap
(31a) Fig. 2 Schematic of indentation by a rigid cylinder
I 1 J”/Z QT+2Q do
7)o Q(Q+cos ¢)—(Mm=1)?si’ ¢ \[cof + 2SI ¢
(31b)

S
o= —c2s?—x% (|x|<cs). (34)
_ ; _ : e

T=(1+a)cod ¢+ ysirt ¢, Q= acod ¢+ Bsirt ¢

(31c) HereS, is an unknown constant and, as in the wedge case, the
form of (34) essentially guarantees that the second Signorini con-
dition, i.e., interpenetration does not occur outside the contact
zone for(25), is satisfied. Application of11) to (34) gives

and the integration variable change {¥tan¢ has been made
for computational efficiency. Substitution @80) into (26) gives
the equations

c?s,
o —4x\a 0= 3 ap. (35)
o _ xVay (322) p*(1-g?c?)
Cag v+ 2@ Substitution of(35) into (22b) with 7=0 gives a form that is
1+ _— apparently nonintegrable. However, the use of formal derivative
y— 2@ operations and finite-part integrati§25]) shows that the inverse
of (22b) exists and is indeed quadratic ir,$) for |x|<cs. Sub-
C ( y+2\/ﬁ) stitution into (33) then yields the equations
Cl=——| 1+ _— (32b)
ax o y-2\ap Bo_ 2 (3)
for both the average normal traction, needed to completely Cas Cle
define the field26) and the(dimensionlesscontact zone expan- Il ra,
sion ratec. . 2 B2 (360)

For (8) the quantities on the right-hand side (#2a,b) are,
respectively, negative and positive. This guarantees in light & both the constars, needed to completely defir84) and the
(27) and Fig. 1 that the first Signorini condition is also satisfied. fidimensionlesscontact zone expansion rateln (36)
is noted that the average contact zone stress is independent of both - T
the indentation speeC) and the rate of contact zone expansion (I 1) = if ” QNT+20 :

(c). This feature arises from the homogeneous nature of the solu- ¢ o Q(Q+cos ¢)—(m—1)sir’ ¢
tion field, i.e., the problem geometry has no characteristic length.

(cog ¢,sir? ¢)de
><(cos,2 d+c?sir? ¢)%?

Indentation by a Rigid Cylinder and, in light of(31b), it is seen that=1,+c?l. It is also noted
; i B . - ; hat /Bu, is the dilatational wave speed parallel to thdirection.
Consider the schematic in Fig. 2: A rigid smooth cylinder o ree. L
radiusr is pressed into the half-space at a constant accelerati “’lﬂ? (Sqilzzjerllrc]Jt:i“r]eisclt()crllclﬁt)ijnoi ;gltsr:)a;z;tri]s;i”ee(;,v I?lﬂ(?g%t?ggt(tsos?%é thee dge
a,. The contact zone is again assumed to spread symmetncC 5e.(363 shows that the defining constagy depends on the

from the initial contact pointx=y=0, s=0) with a constant . dentor shapér) Il as th tact ion xa
subcritical speed, where is again its value nondimensionalizedMd€NtOr SNapér) as well as the contact zone expansion (aje

with respect ta, , and is restricted by25). During the early part
of the process, one can assume ttracs, whereupon the contact

37

zone condition is Solution Aspects
a052 x2 In ([12]) properties for the materials mentioned earlier as being
W=5,2" o5 (|x|<cs). (33) typical of the conditions(8)—beryl, cobalt, ice, magnesium,
r

titanium—are listed. For insight into the response of such materi-

As in the wedge study, the solution for this problem can be basats to indentation by the wedge, the data gatherdffli?|) is used

on the transform solutiofil3) if a o can be identified that allows in connection with(24) and (32a) to calculate the dimensionless

the inverse of22b) with 7=0 to satisfy(33) and the two Signo- Rayleigh speedg and the average normal contact zone stress

rini conditions, and that allows the expansion rate paranmeter The results are presented in Table 1, where it is seen that the

be determined. Rayleigh wave speed parallel to thedirection varies little be-
There is again no characteristic length in the problem geomettween materials as a fraction of the corresponding rotational wave

and corresponding isotropic resuli$20]) suggest the trial speed. The average normal contact zone stress, however, varies

function widely. As noted earliery (radiang should be small, but beryl,
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Table 1 Dimensionless Rayleigh wave speed and average nor- material shear modulus, i.e., materials stiffer in shear must with-

mal contact zone stress stand higher average stresses. The relation between wedge speed
and contact zone expansion rate, as fractions of the rotational
a B m Css (GPA Cr o, (GPa  wave speed along the half-space surface, was approximately the
same for all the materials considered. The average normal stress
Beryl 362 411 201 68.6 0956 —67.6/  in the contact zone was, moreover, independent of the wedge
Cobalt 474 407 237 75.5 0.962 —85.9 speed and zone expansion rate. This lack of sensitivity arose, in
Ice 457 426 2.64 3.17 0.959 —3.47y part, because of the lack of a characteristic length in the problem
Magnesium 374 361 23 16.4 0.943 —19.5  9eometry.

A study of the cylinder solution for the five materials showed
more sensitivity: In particular, the contact zone expansion rate as
a fraction of rotational wave speed depended on both motion pa-
rameters(acceleration, radiys Again, however, the lack of a
e characteristic length in problem geometry produced expansion
rate/acceleration relations that were somewhat independent of the

L R bervl particular material.
1.0 titanium Y The critical expansion rate was taken as the Rayleigh wave
ra beryl speed([22]) associated with the half-space surface. A formula for
0.75 + — this speed, analytical to within a simple quadrature, was obtained.
. P, A similar approach has been used(j@21]), but here a factoriza-
tion of a function of the Rayleigh type yielded a more compact
result. This factorization process also simplified the forms of the
integral transforms of the solution. This was worthwhile because
the anisotropic materials considered here give rise to additional
branch points in the transform plane that do not occur in the
0251 C isotropic limit ([12,21). Such factorizations can also be per-
formed in that limit(see the Appendjxbut, because additional
branch points do not arise, the advantage of the procedure is less
t ; ¥ ’ t relevant.
0 0.5 1.0 1.5 2.0 2.5 3.0 In summary, the present results are limited by the lack of a
characteristic length. Nevertheless, they are exact, and in a some-
Fig. 3 Contact zone expansion rate variation with wedge and what simpler form than might be expected for an anisotropic ma-
cylinder motion terial. They also do allow first-step insight into the response of
transversely isotropic or orthotropic materials to rafdgnamio
indentation.

Titanium 3.88 347 248 46.7 0.936 —45.5)

051

) N 4
t

cobalt and titanium—Dbeing stiffer in shear,g)—must, neverthe-
less, withstand much larger average stress values for a given
wedge profile.

Another feature of importance is the wedge speed/contact Zo%gknowledgment
expansion rate relatiof32a). Values ofc that satisfy(25) are The support of the National Technical University of Athens
plotted versusC in Fig. 3 for beryl. Except for the small differ- facilitated the visit of HGG with LMB at the University of Ken-
ences in the maximum allowable value®fcy, seen in Table 1, tucky for preliminary discussions of this project. HGG also
this curve would, on the scale chosen, essentially also serve @sknowledges the support of the Greek General Secretariat for
the other four materials. That is, althou(f1) and (32b) suggest Research and Technology under program PENED 99 DE 642.
a robust dependence on material constaat®g(m, y), the varia-
tions of expansion rate with wedge speed as fractions of the rota-
tional wave speed are essentially the same. Figure 3 does indicgfssbendix
nevertheless, that the rate of increase of zone expansion rat
higher for higher wedge speeds. ConsiderN, defined in(17c). By using(17b) and(14c), it can

For insight into the short-time response of the five materials tee written as
indentation by the accelerating cylindé€Beéb) is also plotted in o2 2\ A2 2 29 o
Fig. 3. In this case, the two curves, for beryl and titanium, serve Ny=(B"—ab”)(A"—aa”) —m'q aa’. (A1)
on the scale given, to illustrate the response for the materiaSarrying out the multiplication and usir(@4a,b) and (20) gives
Figure 3 does show, nevertheless, ticais more sensitive to
changes in the cylinder motion propertigsg,) than it is to the
wedge motion properties/,C).

2 2 42

—92A2R2— > & -
N,=2AB%~ = 5

But (14a,b) and (20) also show that

(m?g%+B2—A?), (A2)

Comments

. . . o . 1

This article considered the dynamic indentation of a class of 82—4A282=did2,,m2q2+ |32:§(d2++d2,)—A2 (A3)
transversely isotropic or orthotropic linearly elastic homogeneous
half-spaces in plane strain. For illustration, indentation was eith@hereupon(A2) can be written as
by a rigid smooth wedge, moving at a constant speed, or a rigid
smooth cylinder in constant acceleration. The contact zone was
assumed to expand symmetrically from the points of initial con-
tact at constant subcritical rates. . ) )

A transient analysis provided exact transform solutions in tern#& & Similar fashion(17b) and(15c) can be written as
of a contact zone normal stress distribution. The wedge solution

howed for fi ifi ials in the cl idered that th Bd- 2
showed for five specific materials in the class considered that the M= —(A2—aa®)N, N=A+(1-m)B (A5a)
average normal contact zone stress is largely determined by the Jaa

sz%[(d+fd_)2*4A2]=d+d—(aaZ’A2)' (A4)
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York, NY 10016-5990, or to the Editor of theoURNAL OF APPLIED MECHANICS. Discussions on
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need more time to prepare a Discussion should request an extension of the deadline from the
Editorial Department.

Elastic Multiscale Contact of Rough whereE=E/(1—1?), andK, is a coefficient which depends on

. ’ fa the number of scales introducedand was computed by Archard
Surfaces: Archard’s Model Revisited for the first few scales only of his model. Archard’s main finding

and Comparisons With Modern Fractal was thate, tends rapidly to one as is increased. No particular
attention was, vice versa, paid by Archard to the coefficient
Models which will be here recomputed in general and will be specialized
for a fractal geometry.
Independently from these multiscale models, and actually ex-
tending these results, Greenwood and Williamsgh], GW

M. Ciavarella

CNR-IRIS, str. Crocefisso 2/B, 70125 Bari, Italy model, in the following showed that statistical distribution of

e-mail: M.Ciavarella@area.ba.cnr.it heights asperities leadst least approximatelyto linearity be-
tween 7 and p independently on the exact law relating locally

G. Demelio with p, i.e., including any arbitrary local elastoplastic constitutive

Dipartimento di Progettazione e Produzione Industriale and frictional laws. Only recent experiments at very small scales
" with just one asperity in contact under very carefully controlled

Politecnico di Bari, Viale Japigia 182, 70126 Bari, conditions are having some success in explaining the intrinsic

Italy properties of friction(see[6]). It has been found in particular that
e-mail: Demelio@poliba.it the friction coefficient is a function of the size of the asperity, and
varies from very high values close to the elastic moduli of the
materials(aroundG/30, in particular, wher& is the shear modu-
1 Introduction lus of the ma_lteria_l for smallest siz_e to Peierls stress values, com-
parable to yield limits at larger sizes. When this knowledge will
Bowden and Tabof{1] BT, in the following state that friction pe completed, the way towards quantitative predictions of the ac-
is dictated by “adhesioricold weld” and “ploughing (inelastic - tual “averaged” friction coefficient will depend on the actual pre-
deformation term” between asperities. Amonton’s law couldcise determination of the distribution of contact sizes. This in turn
easily be explained for the ploughing term, as the real area @fj| need an accurate modelling of real surfaces. As recently pro-
contact would simply bé\=P/H, whereH is the hardness of the posed, fractal models seem to have a promising role in concisely
softer of the contacting bodies, afdis the applied load. How- qescribing the apparent self-affinity of roughness, i.e., with fea-
ever, for the elastic term, which in most cases would be the domgjes repeating themselves at different scg@s]) but early at-
nant one, Hertz’ theory would not predict linearity with load. Durtempts to use measurements of real surfaces and modelling of
ing the 1950s, seyeral articles appegred in prestigious ,jour”@!%tact([g,lo]) were somehow unsatisfactory because they only
([2—4)) where multiscale models were introduced to explain AMsohsigered a geometrical method for computing the contact area
onton’s and several conngcted ngl-known laws fo.r friction, weafom a “pearing area” assumption. Borri-Brunetto et &L1],
and electrical/thermal resistance, in terms of elastic deformatiqiaq \ersa, created a finite numerical realization of a surface with
of multiscale, and rigorously-scale model which we would NOW 50 0iate fractal properties and then used a numerical method to

call abrracﬁal_([4]), atsh deAplckt]eddln Fég] 1_|”:'Sk's _nc;t the Onht/s Ive the resulting elastic contact problem at various levels of
possibie choice, as the Archard model only takes Into acCountdfayia) giscretization, suggesting that in the fractal limit the con-

Ifoaddret(rj]lsttriﬁutlorll ?nd n(?t of tthetactualtgetorrletr)é. fThese mode[: t may consist of an infinite number of infinitesimal contact
oun at the relatiomeal contact area taotal load Tor an en- ..o aq of total area zero. In other words, the actual contact area

semble of elastic asperities separated enough from each Otheﬁﬂgears to be a fractal with dimension below two. This originated

neglect interaction effects, is a discussion between the authors during the process of writing a
W) @n review paper[12]), and then to develop a rigorous analysis, spe-
An= Kn(’E) (1) cialized to the plane contact for a Weierstrass prdfil&], CDBJ
model in the following, demonstrating that extended regions of
Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF contact are not possible with this model.
ou | | IVISI H Es i
MECHANICAL ENyGINEEIESfor publication in the ASME QURNAL OF APPLIED After this effort, we moved back to the original Archard’s work

MECHANICS Manuscript received and accepted by the ASME Applied Mechanic@nd recognized t.hé}tv although its surface is not a fractal.of YVeH'
Division, Aug. 11, 1999; final revision, May 22, 2000. Associate Editor: J. R. Barbeknown characteristics, and although the contact mechanics is not
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the pressure distribution at the largest scale, due to the small com-
pliance effects, but loses the Archard feature of showing the pres-
sure levels at smaller and smaller scales. It is clear that in prin-
ciple a numerical model could take into account of all these
effects simultaneously, but it remains a problem to build a multi-
scale model from a measured spectrum of the profile.

,p Turning back to the Archard model, at scale 0 Hertzian rela-

7 tions ([15], 4.29 give the contact area asgl) with K,

=m(3Ry/4)?®, ay=2/3, andR, being the radius of the sphere.

The pressure distribution i|s(r)=2E/7TR\/r02—r2. We now as-
sume that in the ared, there is a uniform distribution of asperi-
ties having densityn; (number of asperities per unit aje&x-
tending Archard’s procedure for a contact of always higher
number of scales, we obtain the following general expressions of
the contact area at th@h scale as a function of load:

. 3 W (1-13"*1
An: W(Z Ro"E—)

1-k
a3 R\ 3t

2
3—3 Kk 2R,

n
<11
k=1

Notice that forn— > the dependence on load becomes linear,
independently on the assumptions on the geometrical quantities
m,, R, . If, on the other hand, the ratios, /m,_; andR,/Ry_;
are kept constant, we get

-n

A, 2 403 Ry m, \*°
Ay 3—3 " ho™o) (ERM m @

If we now assumefor the spacing\,, between asperities and for
the radii R, a power-law function, i.e.,A\,_;/\,=v and
R,_1/R,=7P, the density of asperities is obviousdyn=1/>\ﬁ,
i.e., my_1/my=(\n.1/\,)%2=1/% Then, the ratio between con-

£ tact area at subsequent scales is found f(@to be
RS

L 1-37"
An =L ﬁ §71—D) )

A,; 3-3"\A2 2 '

Fig. 1 Example of geometry for the Archard model The limit for n—c is

An B 1 D-1 5
as rigorous as it can be with the Weierstrass profile, the result of A1y : ®)

fractal contact area can be reached very simply by extending the

calculations of the original Archard papé#]) a little further, The tendency to power-law5) indicates that the contact area
with the appropriate assumptions on the asperities geometry. Teds to a fractal set, whereas the fractal dimension computed
results, as shown in the present paper, are surprisingly similarwih the box-counting methotsee CDBJ is

the Weierstrass profile CDBJ model, in many respects. A discus-

sion of possible implications of these findings for friction theories Npss ( A, mn+1)
follows. In
da= Nn _ Anfl my
. A= — - —
2 The Revisited Archard’s Model i Mt ns
Archard’s model is based on the assumption that each asperity An Y
at scalen is replaced by many asperities at the higher scale. This 1\D-1/ 1)\ -2
permits an “uncoupling” of scales in the calculations of the re- In (T/) (;) }

distribution of the pressure from one scale to the next, smaller
one. Therefore, a very simple, analytical recursive argument can

be developed. In order to consider “interaction of scales” one In;

would need to consider the effect of smaller asperities in the cal-

culation of the compliance of the larger ones, as Greenwood aindicating that thdimiting fractal dimension is

Tripp [14] have done in the context of the statistical models. It is

instructive to consider, however, that while the GT model seems d,=3-D. 7

to introduce some degree of multiscale features, the decision of

having just two scales is somehow arbitrary, except for the ca€ensidering thab =1—2 by analogy to the Weierstrass cdsee
where the macroscopic roundness of the sphere is evident. AISBJ), the contact area has dimension between 1 and 2, analo-
the GT model only obtains in most cases a minor modification gbusly to what found in CDBJ.
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3 Discussion that the normal contact problem is largely unsolved. Future pre-

The Archard model leads to asymptotic fractal behavior, und)girCtions of global friction coefficient depend crucially on better

assumptions on radii of curvature for the asperities similar to t glutlons and understanding of this problem.
Weierstrass CDBJ model, and in contrast with Majumdar and

Bhushan[9,10], and their “bearing area” geometrical assump-
tion, with resulting finite area of contact. Obviously, we don’tACknOWIedgments

expect the contact area to be really zero, as real surfaces will hav&@he first author(M.C.) is pleased to acknowledge extensive
a truncation at one point, with asperities of given minimum sizeliscussions with Prof. J. R. Barber, Dr. J. A. Greenwood and Prof.
Even if this was not the case, at a certain scale, deformatiokisL. Johnson, and support from CNR for a Short Term fellow-
would be so intense that plastic deformation, nonlinearities, asHip to travel to Oxford University in July 1999, where this work
other effects not included in our model would appear. It is cleavas completed, and for the network COMESOmputational
that, in the spirit of Archard’s model, if one asperity yields, thisEchanics of Solidsof CNR.

does not affect the load redistribution at the other asperities, as

equilibrium is already accounted for. Therefore, an idea of the

pressure level increase with scale can be found from the tomﬂ)pendix

contact area variation with, as can be obtained from equations

given above. The resulting trends are very similar to the onesPlane and Oversimplified Archard Models. In two dimen-
obtained for the CDBJ model. In particular, the fractal dimensio$ion, with the same assumption for the ratiog.;/m, and

is a constant depending only on geometry and not on load levBk.1 /Ry, we have
but at the first few scale, both higher and lower apparent fractal 3 1
dimension can occur. Also, as proved with the CDBJ model re- U p(__ —+1)
sults, although both the contact areas and the distance between An  [Ag Vo l2 20
asperities become smaller, the ratio between the two decreases, so A, )\_0 22-1/2" 1
that interaction effects become increasingly smaller, and the Hert- F( 2- W)
zian approximation becomes valid in any conditions, i.e., even in

cases where high loads predict full contact at macroscopic scalkich, in the limit for n—o reduces toy* P. Evaluating the

(in this case, the present model is poor whereas the CDBJ moftektal dimension as in the three-dimensional case the limiting
correctly considers the Westergaard solution for predicting cofractal dimension is
tact area size

1-2
(EVH’) (8

An oversimplified model of a surface could be imagined as
having at scal@ a numbery?” of equal asperities of radiug, not

4 Conclusions necessarily equally distributed leads to a fractal dimension
The most striking conclusion of the calculations is that with 2
multiscale models the contact area generéfiyhe radius of as- dA=§(4fD) (20)

perities decreases fast enougends to zero, i.e., is a fractal. The

reason why such an implication had escaped the attention of yghich ranges from 4/3 to 2. However, the relation real contact
searchers for more than 40 years, particularly as the model is quif@a versus load is still Hertzian at all scales, which is contradict-
well known. A possible explanation is that the main issue at thalg Amonton’s law.
time was to find the linearity of relatiofl), i.e., thata,—1,
whereas the coefficients,, were never computed for more than
2-3 scales. The results confirm the conclusion reached numglieferences
cally by Borri-Brunetto et al[11] that the contact area is defined 41] Bowden, F. P, and Tabor, D., 193iction and Lubrication of SolidsClar-
by a fractal set—i.e., that contact is restricted to an infinite set of " engon Press, Oxford, UK.
infinitesimal contact segments in the limit—; there are no  [2] Lincoln, B., 1953, NaturéLondon, 172 p. 169.
contact segments of finite dimension and the total contact arel AfChaf‘(i J'dFH) 1953, “Elastic Deformation and the Contact of Surfaces,”
i o : Nature(London, 172 No. 4385, pp. 918-9109.
tends regl‘”arly to Zero'. In addition, the deviation fr(.)m S|mple [4] Archard, J. F., 1957, “Elastic Deformation and the Laws of Friction,” Proc. R.
power-law fractal behavior at low wave numbers provides an ex- "~ soc. London, Ser. AA243, pp. 190—205.
planation of their observation that the apparent fractal dimensions] Greenwood, J. A., and Williamson, J. B. P., 1966, “The Contact of Nominally
is load-dependent. Even at largethe splitting of segments of the 6] JFlaht SurfaCKesL,” l;goocd R.Tﬁoc. Lc:n_gotn, Se;.ag%, 'r\le- 30?_—[J31|9- o the |
ai ” H onnson, K. L., , “The contribution o Icro-Nano- Iribology to the In-
contact area does not foIIov_v a “simple ru'.e for _suc_cesswe terpretation of Dry Friction,” Proc. Inst. Mech. En@14, Part C, pp. 11-22.
scales. Thergfore, at success!ve sc.ales, eyen if y|e|d|ng IS relaCh?ﬁ Mandelbrot, B. B., 1982The Fractal Geometry of Naturé-reeman, San
at one location, contact splitting will continue at other location,  Francisco.
until yielding is reached even there. Therefore, it now becomeg8] Russ, J. C., 1994ractal SurfacesPlenum Press, New York. )
clear that the Archard model is in the limit compatible in a sensel® Maumdar, A, and Bhushan, B., 1990, “Role of Fractal Geometry in Rough-
. . . . ness Characterization and Contact Mechanics of Surfaces,” ASME J. Tribol.,
to the old Bowden-Tabor simple idea of contact area size given by 115 pp. 205-216.
A=P/H. Therefore, Greenwood-Williamson’s model predicts[10] Majumdar, A., and Bhushan, B., 1995, Characterization and Modeling of Sur-
Amonton’s law from just the effect of randomness of the asperity ~ face Roughness and Contact Mechani¢andbook of Micro/Nano Tribology
: P : : P i CRC Press, Boca Raton, FL, pp. 109-165.

height d.IStnbUtlon’ IndEp,endently on th.e cqnstltgtlve law at mlo[f’l.l] Borri-Brunetto, M., Carpinteri, A., and Chiaia, B., 1998, “Lacunarity of the
croscopic scale, Archard’s model explains it as just an effect Contact Domain Between Elastic Bodies With Rough Boundaries,”
load redistribution for a deterministic geometry, and leads in the = Probamat-21st Century: Probabilities and Material§. Frantziskonis, ed.,
limit to the other possible explanatigthe Bowden-Tabor’s fully 12 g'u\gen ?Oédreché- gP- 45—"64-M 2000, “Contact Mechani -

: H H H ’ aroer, J. R., an lavarella, M., , “Contaci echanics,” special Issue
plasyc On&, thls. goes Some Way '.“ explalnlng Why Amonton’s “Recent Trends in Solid Mechanics,” Int. J. Solids Stru@7, pp. 29-43.
law is so well hidden and intrinsic in th_e contact of any SUrface-[ls] Ciavarella, M., Demelio, G., Barber, J. R., and Jang, Y. H., 2000, “Linear

However, as Bowden-Tabor’s theories and experiments show Elastic Contact of the Weierstrass Profile,” Proc. R. Soc. London, Sef58,

that full yield (ploughing term of friction is negligible with re- No. 1994, pp. 387-405.

“ PR . . . 14] Greenwood, J. A., and Tripp, J. H., 1967, “The Elastic Contact of Rough
spect to “adhesive” elastic term, particularly for hard materials! Spheres,” ASME J. Appl. Mech34, p. 153,

and repeated slidingshakedown we can infer that the real case [15] jonnson, K. L., 1985Contact MechanicsCambridge University Press, Cam-
has a combination of features from all of the above models, and  bridge, UK.
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Transfer Matrix Method of Wave 2 Transfer Matrix and Dual Integral Equations

1 i Consider the problem shown in Fig. 1. An elastic material is
Propagatlop In a I_.ayered composed oN+1 layers bonded througN interfaces. Multiple
Medium With Multlple Interface Griffith cracks are distributed om(<N) interfaces. The interface

between theth and ¢ + 1)th layer is denoted as thi¢h interface.
We suppose that there ané¢p) collinear cracks om(p)th inter-
face. Take thex-axis along the 1st interface, and denote the
Y.-S. Wang x-coordinates of the tips of cradk,, asa,q andb,q (p=1~m,

- . . . . g=1~n(p)) and they-coordinate of theth interface ay=h, .
Institute of Engineering Mechanics, Northern Jiaotong  This paper will consider the propagation of harmonic SH waves

Cracks: Antiplane Case

University, Beijing 100044, P. R. China with frequencye in such a layered medium. The harmonic term
e-mail: yswang@center.njtu.edu.cn e~ "t will be omitted throughout paper.

We decompose the total displacement and stress wave {iglds
D. Gross o} as the sum of the fields without cracks®,o(®} and those
Institute of Mechanics, TU Darmstadt, Hochschulstr. 1, due to the scattering of the cracka®,o(%}, ie., {u,o}
D-64289 Darmstadt, Germany ={u©@, O +{u® N where{u®,s} can be obtained by

the classical transfer matrix method or by other methatig20]).
The following analysis will be focused on the solution of
{u®, ¢}, Without confusion, we omit the superscrif).

The paper develops a universal method for SH-wave propagationThe Helmholtz equation for SH-wave motion in thtd layer is
in a multilayered medium with an arbitrary number of interface

cracks. The method makes use of the transfer matrix and Fourier V2w, +K5w,=0, r=1~N+1 (1)
integral transform techniques to cast the mixed boundary val

problem to a set of Cauchy singular integral equations of the first Lf/rg W(Nilt?] gﬂe:d&s%l_aceirgir:; gﬁggﬂ??ﬁ;\?et v“;?érc?ft'og;ndKTf
type which can be solved numerically. The paper calculates t Tr Tr= N /P W Pr

. . ) . . ?e, respectively, the shear modulus and mass density. We denote
dynamic stress intensity factors for some simple but typical e e displacement discontinuity on tpeh interface as\w, which
amples. [DOI: 10.1115/1.1360180 may be expressed as P

n(p)
pr=qzl AWpg[H(X—apg) +H(x—bpg)],

1 Introduction with Aw,, being the unknown tearing displacement of the crack
Wave propagation in a layered medium is of both theoretichhq (=1~n(p), p=1~m) and H() the Heaviside function.

and practical importance in such fields as composite materialgjen the boundary conditions may be written as

geophysics, etc. Since the 1970s, the problems of wave scattering

from an interface crack between two bonded elastic solids have Tyz=0, Y=hohnig, T=1N+1 2)
been widely investigated by many authors, for instance, Loeber Tysr—Tyze1=0, y=h,, r=1~N (3)
and Sih[1,2], Takai, Shindo, and AtsunfB] Srivastava, Palaiya,

and Karaulia[4], and Bostfen [5] for a mode Il Griffith or Wy =W 1= AWpSir (), Y=hy, r=1~N (4)
penny-shaped interface crack between two half-spaces; Srivas- 0 __ (0 _ _
tava, Gupta, and Palaiy@®,7], and Qu[8,9] for a Mode | or Il 7yzr= Tyzre1™ = Tyzr= ~ Tyzrens X€Llpg, y=he, r=r(p)
interface crack; and Neerhaft0] Kundu [11], Li and Tai[12], ®)
Yang and Bogyf13], and Gracewski and Bodyl4,15 for a Grif- where §;, ) is Kroneck symbol.

fith interface crack of Mode 1, II, and Il in a layered plate or a Applying Fourier integral transform t(l) with respect to, we

layered half-space. However, one may note that only a few papeRgain its solution in the transformed space, which is written in the
have considered multiple interface cracks. The published resuratrix form as
are limited to some simple cases. Kundif] first discussed the (S)=[T,(y)]{C,}
interaction between two interface cracks in a layered half-space r e
under antiplane transient loading, and then in a three-layered plateere
([17]). Zhang[18,19 analyzed the SH-wave propagating throug _ 0
a periodic array of interface cracks between two bonded hal= P Tyads {CH={Cy Cods [TiI=ITIE (W],
spaces. If the medium is composed of multiple layers and, furtheyith
more, if cracks may occur in any interface with an arbitrary num-
ber, the associated wave propagation problems will become more
difficult. Even by using numerical methods such as the finite ele-
ment method and boundary element method, the problems cannot 0 L2 12 ) )
be solved easily. Here, in the present paper, we develop a univaid 8, = (s°—K%,) ™ of which the branch should be determined
sal method for wave propagation in a multilayered medium withuch that
multiple cracks distributed in different interfaces. The methog_I (2212 S K2 _e2\12
makes use of the transfer matrix and singular integral equation’ ("=K)™  |s|=KreiBr=—i(Ky =)™ |S|<KTE7')
techniques. As a preliminary analysis, we treat the SH-wave mo-
tion in this paper. But the method can be extended to the in-plafe bars appearing in above equations indicate the Fourier inte-
case in a straightforward manner. gral transformss is the parameter of the integral transforms, and
C4,,C,, are undetermined functions ef

Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF The integral transforms of boundary conditioi#—(4) can be

MECHANICAL ENGINEERS for publication in the ASME GURNAL OF APPLIED ~ WTitten as

MECHANICS. Manuscript received by the ASME Applied Mechanics Division, Sept.
15, 1999; final revision, Aug. 10, 2000. Associate Editor: R. C. Benson. {C}={B}Cy, {Cni1}={X}Cin+1, (8)

r=1~N+1 (6)
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Fig. 1 A multilayered medium with multiple interface cracks

{S}—{S+14={AS}, y=h;, r=1~N 9)

where
{B}:{ezﬁlho‘l}T‘ {X}:{l‘e*ZBNHhNH}T,

{Asr}:{AWp(srr(p)vo}Ty

The above equations involve the caseshgf> —o and/orhy, 4
— +o0. Equation(9) is a recurrence relation. Substitutif@) into
this relation, we can expre¢€,} with {AS; )} as

p=1~m.

{cl}=p§1 [ErpHAS () (10)

{cr}=p21 ([Lrr ]+ [KerpIH(r =1 (p) = 1)){AS, o)},

r=2~N+1 (11)

where
[Lal=[W 1 E] [Kqil=—[W,] L];
[E={B}LO[W] L] [L]=[WI[Ti(h)]1™%
[W]={B}[1,0]— [Wy, 1 {X}[0,1];
[WI=[Wo] - [W,],  r>1; [Wil=[1];

[Wr+l]:[Tr(hr)]il[TrJrl(hr)]-
Substitution of(10) and(11) into (6) yields

m
{Sr}:pgl [Mrr(p)]{ASr(p)}, r=1~N+1 (12)
where we have denoted
[Merp]=[TiIErp], =1

_ _ (13
[Mrr(p)]=[Tr(y)]([l-rr(p)]+[Krr(p)]H(r - f(p)_ l)): r>1

which is the transfer matrix of the multiple layered medium with

interface cracks. Write the matrpM ;)] as

[Mrr(p)]: (14)

* * :|
Merp)  * ‘
where*s are the other elements of the mafrM , ;)] which are
of no use in the following analysis. Then we have
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m

?yzr: 21 mrr(p)AV_Vp . (15)
p=

Inserting the inverse Fourier transform @®) into the boundary
condition (5), we obtain

» M n(p)

> D MpAWyee ¥ds=—r%(x,h, ), (16)

1
27 ) _.p=14-1

Wheremkp: mr(k)r(p)|y:h,(k)' Xe LkJ , ] = 1""n(k), k=1~m. Itis
straightforward that the following relation holds:

1 (= _
ZJ%Awkje"sxds:O, X Ly a7

Equations(16) and(17) are dual integral equations which will be
transformed to a set of Cauchy singular integral equations in the
next section.

3 Singular Integral Equations and Numerical Solution
Introduce the dislocation density function of the cragl;,

J
¢pq(x):&(Aqu): g=1~n(p), p=1~m (18)

By considering the differential properties of the Fourier transform,
it is not difficult to obtain

AwpqzisﬂJ Bpg(u)e=idu, (19)
Lpq
which, when substituted t6l6) and(17), yields

i e Mo

— s~ f dog(W)eSU¥duds

2m f—xrzl qZ’l Pl

= g,(;)(X,hr(k)), (20)
LkJ

wherexe Ly, j=1~n(k), k=1~m.

It is found thats‘lr“nkp is an antisymmetric function of and
has the following asymptotic behavior 8s+ +°,
oMo+ Ly k=p

Merak) T Mrk)+1 .
0, k#p

s~ iy, — (22)

This result can be easily provée.g., by using Mathematica, Ver-
sion 3.0 for fixed values ofN, m, andp.

Due to(22), special care must be taken in interchanging the two
integrations in(20). However, if we consider the following rela-
tion

. sgn(s)e’s " ¥ds= = (23)
. u—x’

and denote

i (> .
Prp(UX)=5= | [s™ "My~ vdkpSar(s)Je s ¥ds
2

1 (=
I fo [s™ M= nediplsins(u—x)1ds,  (24)

we can transforn§20) into Cauchy singular integral equations:
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n(k) m n(p) 4 Examples
Yk ¢kq(u) d 2 2 d
TT &) Tux u+ =N Ppg(U)Pyp(u,x)du The method developed above is quite general and can be ap-
q ka e pa plied to many complicated problems. In this brief note, we only
=— g)(xyhr(k)). (25) Present numerical results for some simple but typical examples.

Our attention is focused on the dynamic stress intensity factors
Pp(u,x) is a Fredhelm kernel which has no singularity excepihich are defined as

when M ,(n) becomes infinite in some cases which we will dis- .
cuss later. Ki= lim [\2(x=byg) 7%, hyo)]
By introducing the substitutions x—by (32)
KIZ]': lim [\ 2(akj*X)TyZ(X,hr(k))]'

rX:ij§+dkj, U:quﬂ+qu
Ppq(7) = Ppg(Cpqn+dpg)

x~ak’j

The numerical results may be obtained by the following formula
1 (cf. [23)):

qu(77-§):7_Pkp(cpq77+dpqvckj§+dkj) (26) .
7 Kig=—7/CiFig(£1). (33)

1 Op(1— gy

= ke ) , Example 1 Two Bonded Half-Spaces. In order to verify

\ 7 Ciq?~ Cij€ + U i the validity and accuracy of our solution, we calculate the sim-
with ¢, = (by;— ayj)/2 andd, ;= (a,;+ by;)/2, Eq.(25) can be fur- plest case—an interface crack of length les between two dis-

ther converted to standard Cauchy singular integral equations si_milar half-spaces a_nd compare our results to those of Loeber and
Sih [1]. The material constants are taken as/u,=2 and

11 Dy(n) . Em: %Ej 1 o . p1/p,=1. A harmonic SH-wave of the general form
P L 9—£ 7]+p:1 & 710pq pq(n)qu(nrg) 7 W(i):AOeiKTl(xsin00+ycosﬂo)fiwt7 (34)

1 strikes the interface normallygg=0 deg) from medium Isee
= _7';2)(ij§+ dj Dy ) (27) the sketch in Fig. R A, and 6, are the amplitude _and incident
Yk angle, respectively. In computation we chodse- 30 in Eq.(30).
The variation of the dynamic stress intensity factor with normal-
ized frequencyKt;c is shown in Fig. 2, where the dynamic stress
1 intensity factor is normalized by,./C with 7, being the shearing
f ®y;(n)dn=0. (28)  stress along the interface without the crack. The results of Loeber
-1 and Sih[1] are also plotted in Fig. 2. Good agreement between
The above equations can be solved numerically by the meth@d results and theirs is observed. .
developed by Erdogan and Gug@d]. Set Next we consider a more complgx example—three cracks_ with
the same length@and the same distancel between cracks lie
on the interfacésee the sketch in Fig.)3The ratio ofc andd is
(29) setto 1:1.25. The results are shown in Fig. 3, where the dynamic
stress intensity factors are normalized bsyC with 7
= u1AoKt1. Resonance is observed at the lower frequencies, and
Then(27) and (28) reduce to the resonance peaks for the inner crack (tjgs 1 and 2 are more
1M TE (79) m  n(p) pronounced than that for the outer or{éps 3. The later oscil-
— 2 LA E CpqQpq( 75+ &) F pg( 76) lates more pronouncedly at the higher frequencies. In this example
M| 7s—m p=1q=1 we also takeM =30. In order to check the convergence of the
solution we calculate the dynamic stress intensity factd{-gtc
— i O (ciéi+dy Ny (30) =1 for the crack tip 1 by choosing different valuesMfand list
Y2 KISt kTS the results in Table Isee the first line for the present exampleée
is shown thatV =30 can give good accuracy.

Meanwhile,(21) becomes

Fii(n)
1-79

Dyi(n)=

N

M

o

w2 Fii(79=0, (31)
where 7= cos((2s—1)/2M), &=cos@@t/M), t=1~M—1; M is 14
the number of the discrete points Bf;(7) in (—1,1); andj=1 medium2
~n(k), k=1~m. 121

It is noted that difficulties may arise in evaluation of the semi- 10 e

infinite integrals(24) because of the possible simple poles of the I medium 1
integrands along the integral path and located betweenkmn( 08l
and maxKy,). These poles correspond to the general Love-type °
surface waves. One should note that the path of the integration n}’ 061
along the reat-axis is indeed the limit of the path as it approaches N
the reals-axis from below([14,15). Based on this fact, two dif- T 04l L resuits
ferent ways have been developed for dealing with these poles in present
the integrations. Kund{i22] developed a technique of removing 02| v Loeber&Sh 1973a
the singularities from the integrands. In result, the original inte-
grals are divided into two parts—the residues of the integrands at 0.0 , ' r ' ,
the poles and Cauchy principal integrals. The other technique de- 60 05 10 15 20 25 30
forms the contour of integration below the real axis so that no kC

poles occur on the path of integrati¢ef. [13—15). In this brief
note we will employ the second method because it is easy feig. 2 Dynamic stress intensity factor for one interface crack
calculation. in a system of two bonded half-spaces
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Fig. 3 Dynamic stress intensity factor for three interface Fig. 5 Dynamic stress intensity factor for four interface cracks
cracks in a system of two bonded half-spaces in a system of two half-spaces bonded through a layer

Table 1 Normalized dynamic stress intensity factors,
Kyl 7o\C, at Kypc=1 for crack tips 1 in the three examples by
choosing different values of M

each interface. The crack size and distribution are the same as
those in Example 1. The material constants are taken as
Miipoipu3=2:1:2 andp;=p,=ps3; andh:cissetto 1: 1. The

M=20 M =30 M =40 M =60 incident SH-wave with the forn{34) propagates normally ¢,
Example 1 0.804341 0.804396 0.804422 0.804443 = 0 deg) to the interlayer in n;aterlal 1. The normalized dynamic
Example 2 0.684742 0.684793 0.684805 0.684822 stress intensity factork,, / 79\/Cc for the four cracks are plotted
Example 3 0.910096 0.910223 0.910245 0.910267 versusK,C in Fig. 5. As the frequency increases the dynamic

stress intensity factors first decrease and then increase to peak

values. Generally the cracks on the lower interface have higher

_ ) dynamic stress intensity factors than those on the upper interfaces.

Example 2 A Layered Half-Space. Again consider the |n the last two examples, we takd =30 as in the first ex-

above example, but the upper half-space is of finite thickilessample. The convergence is shown in Table 1.

(see the sketch in Fig.)4Figure 4 illustrates the normalized dy-  Finally we mention that the method developed in this brief note

namic stress intensity factoks,, / 7o/C versus the normalized fre- is universal and can be used to solve many complex problems.

quencyKr;c for h/c=1. The effects of the free surface can ba{owever, we only give some simple examples. A lot of topics

observed in the figure. As the frequency increases from zero thgsed on this piece of work are left for further investigation. The

dynamic stress intensity factors also |ncrease.from zero and reaglplane case that is more complicated will be explored in subse-
resonant peak values at rather low frequencies. Contrary to Ejtrent works.

ample |, the outer crack tips involve more pronounced peaks in

the present case. It is worthy of note that a zero value of trlke K led

dynamic stress intensity factors appears at a higher frequerftgknowledgment

(ktic=2.24). All these features may be explained by the reflec- The work was finished during the first author’'s stay in TU-

tion of waves between the free surface and the interface. Darmstadt. Support of the Alexander von Humboldt Foundation is

ratefully acknowledged.
Example 3 Two Half-Spaces Bonded Through a Layer 9 y 9

Consider two half-spaces bonded through an interlayer of thick-

nessh (see the sketch in Fig.)5There are two cracks lying on References
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Composite Plates Using Higher Order as degrees-of-freedom instead of tractions and still produces
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the results compared with the analytical results to prove the accu-
racy and validity of the numerical technique developed. Subse-
M. R. Chitnis quently, a crossply laminated plate has been analyzed and the

results discussed.
Graduate Student

Y. M. Desai Formulation
Assistant Professor A higher order displacement based formulation has been pre-
sented to analyze wave propagation through composite laminated
T. Kant plate. Displacement field is defined by
Professor u
wl =[X1a} (1)
Department of Civil Engineering, Indian Institute of where

Technology Bombay, Powai, Mumbai 400076, India

Xy X, X3 X, 0 0 0 O
[X]= )
0 0 0 0 X; Xy Xz X4
A higher order displacement based formulation has been devahd
oped to investigate wave propagation in fiber-reinforced polymer ¢
composite laminated (FRPCL) plates. The formulation has been fay=[us Uz O bo Wi W 6,1 65]. ®3)
applied, as an illustration, to a plate made up of transverseljere u; andw;, i=1,2 are the generalized displacements along

isotropic laminae with the axes of symmetry lying in the plane @ie x andz-directions, andixi, 6zi, i = 1,2, are rotation and trans-
the lamina. Results for the plane as well as the antiplane strajgrse strain, respectively, at=(—1)'h. Moreover, X;, i
cases are shown to be in excellent agreement with the exact soltt 4 areexpressed as cubic polynomials.

tions for isotropic and transversely isotropic single layered plates. The dispersion equation for wave propagation in a lamina of
Also, numerical results have been obtained for crossply (0 dedg/8fit width can be written as

deg/0 deg/90 deg) laminated composite plates, which agree very

well with the previously published numerical results. The formu- [K]- ¥ M]=0 (4)
lation can be employed to expeditiously investigate the dispersigmqre

characteristics of waves propagating in a plate with an arbitrary

number of anisotropic laminae[DOI: 10.1115/1.1352062 [K]=[Kyg]+iN([Ka] = [K1o]") +N[K ). (5)

Here

Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF
MECHANICAL ENGINEERS for publication in the ASME QURNAL OF APPLIED h
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, Dec. [Kab] =

([B.J1CI[Bp]dz, ab=1,2
2, 1999; final revision, Oct. 6, 2000. Associate Editor: A. K. Mal. h
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Fig. 1 (a) Comparison of results obtained by the present method with the analytical results presented by
Mindlin [1] (b) Results obtained by present method for crossply composite laminated plate of (0 deg/90
deg/0 deg/90 deg) lay-up

and ers. The results obtained have been presented graphically in Fig.
h 1(b). Only frequencies for real wave numbers have been presented
[M]= f (IX]'p[X])dz. for brevity. . .
“h Thickness of each lamina: 6.35 mm, mass density: 1.0 kg/m
Further,[B,], a=1,2 are strain displacement relationship matri-_ 1;9(?; gpi?gsii?!gg'%ézl46'83 GPa,C15=4.08 GPa,Css

ces andC] is the constitutive matrix. For 90 ded laminaC..=15.99 GPa.C..=4.08 GPa.C
The general solutiofig} ={qo}e'"* sin(wt) has been employed _ 146 g3 GPa855=5.86%1|%a ' e s
to arrive at the dispersion Eq4). Here, {d,} is the amplitude |, Fig 1(ab) the natural frequencies of vibration and the wave

vector, w is circular frequency, and ={n/H, where{ is the mper have been normalized to facilitate comparative study. Pa-
wave number and is the total thickness of the laminated plate 5 netersn and¢ have been defined as

Equation(4) can be solved as an eigenvalue problem and fre-

guenciesw can be obtained for given value if H p N
O=w— — g0 and (=-—.
a C55 T
Numerical Investigation Here, p is the mass densityss is the in-plane shear modulus of

elafsticity of 0 deg lamina, anid is the total thickness of the plate.

excellent agreement of the results with the analytical results
sotropic plate shown in Fig.(&) demonstrates the accuracy of
1 proposed method. The dispersion curves shown in Fim. 1

crossply plate differ considerably from those shown in Fig.

a) for isotropic plate. The cutoff frequencies are lowered in
mparison with isotropic plate and in general the dispersion
isotropic plate having properties as presented below: curves follow an asymptoltic path. A thorqugh modal analysis is

thickness of plate: 254 mm, mass density' 2 76gREcessary for interpretation of these_ dispersion curves. Such
%10 kg/rm? ) : ' T nalysis is not performed here for brevity, however.

C1,=95.590 GPa,C,3=42.950 GPa,C33,=95.590 GPa, ,
Cee=26.320 GPa Conclusions

The plate has been divided into 25 sublayers. The results haveA higher order displacement based formulation has been pre-
been presented graphically in Figal where the solid lines rep- sented to analyze dispersion characteristics of guided waves in a
resent analytical results, whereas solid circles represent the reslatginated composite plate of infinite dimensions. The interlayer
obtained by using the present formulation. continuity of displacements and rotations has been imposed while

A crossply laminated plate of0 deg/90 deg/0 deg/90 deg assembling the stiffness and mass matrices of each layer, thus
lay-up and material properties as presented below has been solveking the formulatiorC! continuous. The results for the isotro-
wherein each lamina of the laminate was divided into 20 sublapic plate have been shown to be in close agreement with the

A general-purpose program has been developed on the basi
theoretical formulation discussed above, for determining natu%ri
frequencies of vibration of a composite laminate subjected to
time-harmonic wave. The program has been developed to d
with both real and imaginary wave numbers. The numerica
method proposed has been validated by comparing results Q
tained with the analytical results presented by Mindlin for an
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analytical results. The proposed method has been demonstratetbtation. Consequently, the numerical optimization routine needs
be very simple and straightforward without any loss of accuraonly consider thickness variations between these two bounds.
in comparison with the available numerical methods. The resultfiese bounds differentiate this optimization problem from those
obtained for a crossply laminated composite plate have showrihat have been previously studied. For example, Olp@ffand
considerable difference in comparison with the dispersion curv&@sambiratnam and ThevendrdB] maximized the fundamental

obtained for isotropic plate. vibration frequency of a variable thickness, stationary, circular
disk subject to a constraint on the disk volume. Optimal thickness
Acknowledgments profiles for minimum stress differend@4]) and kinetic energy

. storage([5]) have also been computed.
The work reported has been supported in part by a grant from, thjs investigation, the optimal thickness profile for maximiz-
the Ministry of Human Resource Developmef@rant No. jng critical speed consists of two annuli, the inner one with thick-

98MHO18. ness equal to the upper bound, the outer one with thickness equal
to the stress-induced lower bound. The percentage increase in
References critical speed is a function of clamping ratio and the lower bound,
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Proc. First Sympo. on Naval Struct. MecRergamon, New York, pp. 199— radial profiles currently in use by industry are qualitatively similar

232. o o to the optimal profile, the industrial profile examined here actually
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pp. 17-34. the dimensionless critical spe€l., of an axisymmetric, centrally
clamped, rotating circular saw is the lowest eigenvdluef the
eigenvalue problem derived by rendering the functid®jal/] sta-
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Thickness Profiles for Rotating 1
Circular Disks That Maximize R[W]zzf QPh(arw,+ogw,5/r*—w.5) + h*{(Vw)?
Critical Speed = 2(1= D)Wy (W, /14 W, 1) = (W, 1), ) 2]} A

)
G. M. Warner wheredA=rdrdé is the planar, unclamped area of the disk ex-
Mem. ASME tending overk<r<1 and 0<6<2m, w(r,6) is the transverse
deflection of the diski(r) is the disk thicknessr, ando, are the

A. A. Renshaw radial and hoop stresses for unit rotation speeds Poisson’s
Mem. ASME ratio, V2 is the Laplacian operator, and a comma indicates partial

differentiation.

Department of Mechanical Engineering, Columbia

University, M/C 4703, New York, NY 10027
Table 1 Summary of optimal thickness profile designs and their

properties
. Clamping Minimum Transition Critical Percent
[DOI: 10.1115/1.1360182 Ratio, x Thickness, hy, | Radius, o | Speed, Q.. | Increase
0.2 0.3 0.819 6.139 23.97%
. 0.2 0.5 0.811 5.514 11.35%
1 Introduction 0.2 0.7 0.841 5.153 4.06%
Radial thickness profiles of industrial circular saws often con g'g 013 5 83 7 g'ggg 3 3'1'20/
prise a series of two or three uniform thickness annuli. Bjiid) 03 05 0.894 596 3 69°/°
claims that such thickness profiles increase the critical speed g 0.3 0.7 0.947 5.784 0.63%
saw, which increases the operational speed range of the saw 0.3 1 - 5.748 -
helps maintain cutting straightness. The purpose of this brief ng 0.4 0.3 0.877 7.463 16.77%
is to compute the optimal saw radial thickness profile for a fixg 0.4 05 0.871 6.821 6.73%
width cut and compare that profile to those currently in use. 0.4 0.7 0.915 6.501 1.72%
Thickness variations of circular saws are bounded from abo g'g 013 e S'gg; =
by the thickness of the carbide tips brazed to the saw teeth. A 05 0.5 0.914 7864 368“70
thlckness_greate( than the ca(blde tip thlcl_<ness vv_|II rub against { 0.5 0.7 0.959 7,624 0.51%
wood durlng. cutting, which will pro.duce high cutting torques an 05 1 . 7.585 -
burn and ruin the cut §u_rface. T_hlckness variations are boun_c 0.6 0.3 0.918 10.387 11.62%
from below by some minimum thickness capable of withstandin] 0.6 0.5 0.932 9.605 3.21%
the in-plane stresses in the saw produced from cutting forces 4 0.6 0.7 0.972 9.338 0.34%
0.6 1 - 9.306 --
07 . . ) .04%
Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF 07 8 g 8 ggg 113245422 12040;//
MECHANICAL ENGINEERS for publication in the ASME OQURNAL OF APPLIED 0'7 0'7 0.984 12é87 0'58°/°
MECHANICS. Manuscript received by the ASME applied Mechanics Division, Mar| O‘ : ' i e
20, 2000; final revision, Dec. 5, 2000. Associate Editor: R. C. Benson. 14 1 = 12.216 —
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Table 2 Comparison of uniform thickness, optimal profile, and existing profile designs

Saw Profile Design Clamping Minimum Transition Critical Percent
Ratio, Thickness, hnin Radius, rop. | Speed, Q. Increase
Uniform Thickness 0.625 1 - 9.854 -
Optimal Profile 0.625 0.702 0.96 9.926 0.73%
Existing Saw Profile 0.625 0.702 0.795 8.548 -13.25%

The axisymmetric stresses, and o, are determined prior to 3 Results and Comparison to Existing Designs
solving (1) by computing the in-plane radial displacemerft)

that renders the functiona] u] stationary([7]) Under all conditions tested, the optimum profile for maximizing

critical speed consists of two, uniform thickness annuli:

1
S[u]=fEh[lZ(u,r2+u2/r2)+24vu,ru/r]—rudA. ) h(r)= 1 KST<Topt ©)

Pmin,  Topr<r=<1

The stress are then Table 1 gives a summary of specifig, and{1, as functions of«

o,=12u, +12vu/t  o,=12vu, +12u/r. 3) andhy,,. In general, for a giverk, ash,, increasesy 4, moves
) o _ N radially outward until the limiting conditior,=ro,=1 of a
While explicit equations and boundary conditions oandw  uniform thickness disk is reached. Table 1 also reports the per-
can be derived by setting the variation andR equal to zero, centage increase ifd., over the uniform thicknes$)=1 case.
the fact thath(r) is not uniform makes these calculations laboriThese increases can be substantial for small valuds,qf Fur-
ous. A more convenient solution approach is to rer@nd R  ther details concerning the optimal profile can be found ®).
stationary using the finite element method. With this approach, Table 2 compares the critical speed of three different saw de-
only the essential boundary conditions need be explicitly imposesglgns with k=0.625: a uniform thickness saw with=1; the
_ _ -0 4 optimal design forh,,;,=0.702; and an actual industrial design
u(x)=w(x)=w,(x)=0. (4} described by Bird1] for which h,,,=0.702. Figure 1 gives scale
The three natural boundary conditions—vanishing moment, drawings of these three radial profiles. While the optimal design
and shear at=1—are satisfied as part of the finite element sgeredicted here raise€, slightly (0.73 percent the industrial
lution process. We use the three-node element described by CHefign profile actually decreases, by over 13 percent. If);,
and Ren[8] with quadratic trial function foru and quintic trial were the principal design parameter for this particular industrial
functions forw and up to 21 elements betwearsr<1. This saw, the stepped saw profile would be significantly worse than the
number of elements gives results that are within 0.1 percent @hiform thickness profile. Since this does not seem to be the case

those with twice as many elements. in practice, it suggests thét, is not the principal design param-
In rendering(1) dimensionless, we takem(«x)=1. We further eter for this saw. Nevertheless, in the cases whege is the
bound the thickness variations by principal design parameter, the optimal profiles described here can

be used to improve rotating disk design.
hpinsh<1 5)

whereh,,,, is a fixed constant. The optimization was performed Discussion
using Powell's method which varied the nodal valuehgf) in

order to maximizeQ),, . The optimal thickness profiles found here are in some respects

counterintuitive. If one uses the analogy of an I-beam or a honey-
comb panel, one might guess that removing mass from the mid-
plane of the disk might improve its critical speed, which in fact, it
does([10)).
@ Accordingly, one might expect that removing mass from the
exterior surfaces of the disk would lower critical speed. This rea-
/ soning, however, is incorrect, as the results reported here indicate.
For rotating disks, removal of mass from either the midplane or
the exterior surfaces can raise critical speed, provided, of course,
that the removal is performed at the correct radial locations. Fur-
thermore, the mass removal should not be gradual or even con-
tinuous, as is found in several related optimization problems
(o) ([11,12).
/ From the perspective of the saw designer, the most important
:D insight to be gained from this investigation is the fact that the
uniform thickness profile is not optimal with regard to critical
speed. In hindsight, this result is straightforward and, as one re-
viewer felt, perhaps even obvious. Historically, however, stepped
circular saws did not become common in the industry until the
1980s, long after resources required to analyze and design such
saws became readily available. If, in fact, this results were obvi-
/ :: ous, there would not have been such a delay between the analytic
capabilities of the engineers and the industry practice.
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